Vannucci, R. C. & Vannucci, S. J. Glucose metabolism in the developing brain. Semin. Perinatol. 24, 107–115 (2000).
Google Scholar
Amendoeira, S., McNair, C., Saini, J. & Habib, S. Glucose homeostasis and the neonatal brain: a sweet relationship. Neonatal Netw. 39, 137–146 (2020).
Google Scholar
Stanley, C. A., Weston, P. J., Harris, D. L., De León, D. D. & Harding, J. E. Role of beta-hydroxybutyrate measurement in the evaluation of plasma glucose concentrations in newborn infants. Arch. Dis. Childh. Fetal Neonatal Ed. rcg (2024).
Roeper, M., Hoermann, H., Kummer, S. & Meissner, T. Neonatal hypoglycemia: lack of evidence for a safe management. Front. Endocrinol. 14, 1179102–1179102 (2023).
Harris, D. L., Weston, P. J., Gamble, G. D. & Harding, J. E. Glucose profiles in healthy term infants in the first 5 days: the glucose in well babies (Glow) study. J. Pediatr. 223, 34-41.e4 (2020).
Cornblath, M. & Reisner, S. H. Blood glucose in the neonate and its clinical significance. N. Engl. J. Med. 273, 378 (1965).
Google Scholar
Srinivasan, G., Pildes, R. S., Cattamanchi, G., Voora, S. & Lilien, L. D. Plasma glucose values in normal neonates: a new look. J. Pediatr. 109, 114–117 (1986).
Google Scholar
Wight, N. E. Hypoglycemia in breastfed neonates. Breastfeed. Med. 1, 253–262 (2006).
Google Scholar
Thornton, P. S. M. B. B. et al. Recommendations from the Pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J. Pediatr. 167, 238–245 (2015).
Google Scholar
De Angelis, L. C. et al. Neonatal hypoglycemia and brain vulnerability. Front. Endocrinol. 12, 634305–634305 (2021).
Devraj, K. et al. Glut-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J. Neurosci. Res. 89, 1913–1925 (2011).
Google Scholar
Simpson, I. A., Carruthers, A. & Vannucci, S. J. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow. Metab. 27, 1766–1791 (2007).
Google Scholar
Mergenthaler, P., Lindauer, U., Dienel, G. A. & Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597 (2013).
Google Scholar
Rao, R., Nashawaty, M., Fatima, S., Ennis, K. & Tkac, I. Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus. NMR Biomed. 31, e3910-n/a (2018).
Harris, D. L., Weston, P. J. & Harding, J. E. Lactate, rather than ketones, may provide alternative cerebral fuel in hypoglycaemic newborns. Arch. Dis. Child. Fetal Neonatal Ed. 100, F161 (2015).
Google Scholar
Harris, D. L., Weston, P. J. & Harding, J. E. Alternative cerebral fuels in the first five days in healthy term infants: the glucose in well babies (Glow) study. J. pediatrics 231, 81–86.e82 (2021).
Google Scholar
Maran, A. et al. Brain function rescue effect of lactate following hypoglycaemia is not an adaptation process in both normal and type I diabetic subjects. Diabetologia 43, 733–741 (2000).
Google Scholar
Galderisi, A. et al. Glucose-to-lactate ratio and neurodevelopment in infants with hypoxic-ischemic encephalopathy: an observational study. Eur. J. Pediatr. 182, 837–844 (2023).
Google Scholar
Burke, S. P. & Nadler, J. V. Effects of glucose deficiency on glutamate/aspartate release and excitatory synaptic responses in the hippocampal Ca1 area in vitro. Brain Res. 500, 333–342 (1989).
Google Scholar
Auer, R. N. Progress review: hypoglycemic brain damage. Stroke 17, 699–708 (1986).
Google Scholar
Satrom, K. M. et al. Neonatal hyperglycemia induces cxcl10/cxcr3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J. Neuroinflamm. 15, 82–82 (2018).
Chugani, H. T. A critical period of brain development: studies of cerebral glucose utilization with pet. Prev. Med. 27, 184–188 (1998).
Google Scholar
Howarth, C., Gleeson, P. & Attwell, D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 32, 1222–1232 (2012).
Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).
Google Scholar
Pryds, O., Greisen, G. & Friis-Hansen, B. Compensatory increase of cbf in preterm infants during hypoglycaemia. Acta Pædiatr. Scand. 77, 632–637 (1988).
Google Scholar
Mesotten, D. et al. Espghan/espen/espr/cspen guidelines on pediatric parenteral nutrition: carbohydrates. Clin. Nutr. 37, 2337–2343 (2018).
Google Scholar
Tas, E., Garibaldi, L. & Muzumdar, R. Glucose homeostasis in newborns: an endocrinology perspective. Neoreviews 21, e14 (2020).
Google Scholar
Angelis, D., Jaleel, M. A. & Brion, L. P. Hyperglycemia and prematurity: a narrative review. Pediatr. Res. 94, 892–903 (2023).
van Kempen, A. A. M. W., Ackermans, M. T., Endert, E., Kok, J. H. & Sauerwein, H. P. Glucose production in response to glucagon is comparable in preterm Aga and Sga infants. Clin. Nutr. 24, 727–736 (2005).
Google Scholar
Van Kempen, A. A. M. W. et al. Adaptation of glucose production and gluconeogenesis to diminishing glucose infusion in preterm infants at varying gestational ages. Pediatr. Res. 53, 628–634 (2003).
Google Scholar
Sauer, P. J. J., Van Aerde, J. E. E., Pencharz, P. B., Smith, J. M. & Swyer, P. R. Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13clglucose. Clin. Sci. 70, 587–593 (1986).
Google Scholar
Forsyth, J. S. & Crighton, A. Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants. Arch. Dis. Child. 73, F4–F7 (1995).
Google Scholar
Hubbard, E. M. & Hay, W. W. The term newborn: hypoglycemia. Clin. Perinatol. 48, 665–679 (2021).
Google Scholar
Beardsall, K. Measurement of glucose levels in the newborn. Early Hum. Dev. 86, 263–267 (2010).
Google Scholar
Roth-Kleiner, M., Stadelmann Diaw, C., Urfer, J., Ruffieux, C. & Werner, D. Evaluation of different poct devices for glucose measurement in a clinical neonatal setting. Eur. J. Pediatr. 169, 1387–1395 (2010).
Google Scholar
Wight, N. E. Academy of Breastfeeding Medicine Abm clinical protocol #1: Guidelines for glucose monitoring and treatment of hypoglycemia in term and late preterm neonates, revised 2021. Breastfeed. Med. 16, 353–365 (2021).
Google Scholar
Adamkin, D. H. Clinical report—postnatal glucose homeostasis in late-preterm and term infants. Pediatrics 127, 575–579 (2011).
Google Scholar
Wackernagel, D. et al. Swedish national guideline for prevention and treatment of neonatal hypoglycaemia in newborn infants with gestational age ≥35 weeks. Acta Paediatr. 109, 31–44 (2020).
Google Scholar
Narvey, M. R. & Marks, S. D. The screening and management of newborns at risk for low blood glucose. Paediatr. Child Health 24, 536–544 (2019).
Google Scholar
Beardsall, K. et al. Validation of the continuous glucose monitoring sensor in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 98, F136–F140 (2013).
Google Scholar
Tabery, K. et al. Feasibility and safety of continuous glucose monitoring in infants at risk of hypoglycemia in a rooming-in setting. Fetal Pediatr. Pathol. 41, 627–633 (2022).
Google Scholar
Kalogeropoulou, M.-S., Iglesias-Platas, I. & Beardsall, K. Should continuous glucose monitoring be used to manage neonates at risk of hypoglycaemia? Front. Pediatr. 11, 1115228–1115228 (2023).
Google Scholar
Fernández Martínez, M. D. M. et al. Monitoring the frequency and duration of hypoglycemia in preterm infants and identifying associated factors. Fetal Pediatr. Pathol. 40, 131–141 (2021).
Google Scholar
Beardsall, K. et al. Real-time continuous glucose monitoring in preterm infants (react): an international, open-label, randomised controlled trial. Lancet Child Adolesc. Health 5, 265 (2021).
Google Scholar
Galderisi, A. et al. Continuous glucose monitoring in very preterm infants: a randomized controlled trial. Pediatrics 140, 1 (2017).
Kalogeropoulou, M.-S., Thomson, L. & Beardsall, K. Continuous glucose monitoring during therapeutic hypothermia for hypoxic ischaemic encephalopathy: a feasibility study. Arch. Dis. Child. Fetal Neonatal Ed. 108, 309–315 (2023).
Google Scholar
Goldberg, P. A. et al. Experience with the continuous glucose monitoring system in a medical intensive care unit. Diabetes Technol. Ther. 6, 339 (2004).
Google Scholar
McKinlay, C. J. D. et al. Neonatal glycemia and neurodevelopmental outcomes at 2 years. N. Engl. J. Med. 373, 1507–1518 (2015).
Google Scholar
Uettwiller, F. et al. Real-time continuous glucose monitoring reduces the duration of hypoglycemia episodes: a randomized trial in very low birth weight neonates. PloS one 10, e0116255–e0116255 (2015).
Google Scholar
Dinu, D. & Rozance, P. Real‐time continuous glucose monitoring in preterm infants (react): an international, open‐label, randomised, controlled trial. Acta Paediatr. 110, 2656–2657 (2021).
Google Scholar
Ranger, M. et al. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PloS ONE 8, e76702–e76702 (2013).
Google Scholar
Hoseth, E., Joergensen, A., Ebbesen, F. & Moeller, M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch. Dis. Child. Fetal Neonatal Ed. 83, F117–F119 (2000).
Google Scholar
Koh, T. H., Aynsley-Green, A., Tarbit, M. & Eyre, J. A. Neural dysfunction during hypoglycaemia. Arch. Dis. Child. 63, 1353–1358 (1988).
Google Scholar
Harding, J. E., Harris, D. L., Hegarty, J. E., Alsweiler, J. M. & McKinlay, C. J. D. An emerging evidence base for the management of neonatal hypoglycaemia. Early Hum. Dev. 104, 51–56 (2017).
Google Scholar
Harris, D. L. M., Weston, P. J. M. & Harding, J. E. M. Incidence of neonatal hypoglycemia in babies identified as at risk. J. Pediatr. 161, 787–791 (2012).
Google Scholar
Improda, N. et al. Perinatal asphyxia and hypothermic treatment from the endocrine perspective. Front. Endocrinol. 14, 1249700–1249700 (2023).
Hoermann, H. et al. Reliability and observer dependence of signs of neonatal hypoglycemia. J. Pediatr. 245, 22–29.e22 (2022).
Google Scholar
Cummings, C. T., Ritter, V., LeBlanc, S. & Sutton, A. G. Evaluation of risk factors and approach to screening for asymptomatic neonatal hypoglycemia. Neonatology 119, 77–83 (2022).
Google Scholar
Giri, D., Hawton, K. & Senniappan, S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. J. Pediatr. Endocrinol. Metab. 35, 279–296 (2022).
Google Scholar
Shah, P. M. D., Rahman, S. A. P., Demirbilek, H. M. D., Güemes, M. M. D. & Hussain, K. P. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol. 5, 729–742 (2017).
Google Scholar
Muukkonen, L., Männistö, J., Jääskeläinen, J., Hannonen, R. & Huopio, H. The effect of hypoglycaemia on neurocognitive outcome in children and adolescents with transient or persistent congenital hyperinsulinism. Dev. Med. Child Neurol. 61, 451–457 (2019).
Google Scholar
Avatapalle, H. B. et al. Abnormal neurodevelopmental outcomes are common in children with transient congenital hyperinsulinism. Front. Endocrinol. 4, 60–60 (2013).
Männistö, J. M. E., Jääskeläinen, J., Otonkoski, T. & Huopio, H. Long-term outcome and treatment in persistent and transient congenital hyperinsulinism: a Finnish population-based study. J. Clin. Endocrinol. Metab. 106, e1542–e1551 (2021).
Google Scholar
Tam, E. W. Y. et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia. Pediatrics 122, 507–512 (2008).
Google Scholar
Pinchefsky, E. F. et al. Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: a prospective cohort study. J. Pediatr. 209, 23–32 (2019).
Google Scholar
Harris, D. L. M. et al. Cot-side electroencephalography monitoring is not clinically useful in the detection of mild neonatal hypoglycemia. J. Pediatr. 159, 755–760.e751 (2011).
Google Scholar
Roeper, M. et al. Risk factors for adverse neurodevelopment in transient or persistent congenital hyperinsulinism. Front. Endocrinol. 11, 580642–580642 (2020).
Burns, C. M., Rutherford, M. A., Boardman, J. P. & Cowan, F. M. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122, 65–74 (2008).
Google Scholar
Singh, M. et al. Neurodevelopmental outcome of asymptomatic & symptomatic babies with neonatal hypoglycaemia. Indian J. Med. Res. 94, 6 (1991).
Google Scholar
Koivisto, M., Blanco-Sequeiros, M. & Krause, U. Neonatal symptomatic and asymptomatic hypoglycaemia: a follow-up study of 151 children. Dev. Med. child Neurol. 14, 603 (1972).
Google Scholar
Spar, J. A., Lewine, J. D. & Orrison, W. W. Jr. Neonatal hypoglycemia: CT and Mr Findings. Am. J. Neuroradiol. 15, 1477–1478 (1994).
Google Scholar
Musson, R. E. et al. Diffusion-weighted imaging and magnetic resonance spectroscopy findings in a case of neonatal hypoglycaemia. Dev. Med. Child Neurol. 51, 653–654 (2009).
Google Scholar
Kim, S. Y., Goo, H. W., Lim, K. H., Kim, S. T. & Kim, K. S. Neonatal hypoglycaemic encephalopathy: diffusion-weighted imaging and proton Mr spectroscopy. Pediatr. Radiol. 36, 144–148 (2006).
Google Scholar
Caraballo, R. H. et al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr. Neurol. 31, 24–29 (2004).
Google Scholar
Prasad, S. & Dinkin, M. Higher cortical visual disorders. Contin 25, 1329–1361 (2019).
Edwards, T. et al. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. Cochrane Database Syst. Rev. 3, CD011027 (2022).
Google Scholar
Harris, D. L. et al. Outcome at 2 years after dextrose gel treatment for neonatal hypoglycemia: follow-up of a randomized trial. J. Pediatr. 170, 54 (2016).
Google Scholar
van Kempen, A. A. M. W. et al. Lower versus traditional treatment threshold for neonatal hypoglycemia. N. Engl. J. Med. 382, 534–544 (2020).
Google Scholar
Griffith, R. et al. Two-year outcomes after dextrose gel prophylaxis for neonatal hypoglycaemia. Arch. Dis. Child. Fetal Neonatal Ed. 106, 278–285 (2021).
Google Scholar
Edwards, T. et al. Neurocognitive outcomes at age 2 years after neonatal hypoglycemia in a cohort of participants from the HPOD randomized trial. JAMA Netw. Open 5, e2235989–e2235989 (2022).
Google Scholar
McKinlay, C. J. D. et al. Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. JAMA Pediatr. 171, 972–983 (2017).
Google Scholar
Harris, D. L., Weston, P. J., Signal, M., Chase, J. G. & Harding, J. E. Dextrose gel for neonatal hypoglycaemia (the sugar babies study): a randomised, double-blind, placebo-controlled trial. Lancet 382, 2077 (2013).
Google Scholar
Shah, R. et al. Association of neonatal hypoglycemia with academic performance in mid-childhood. JAMA 327, 1158–1170 (2022).
Google Scholar
Kaiser, J. R. et al. Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study. JAMA Pediatr. 169, 913–921 (2015).
Google Scholar
Sivarajan, M. et al. Decreasing early hypoglycemia frequency in at-risk newborns after implementing a new hypoglycemia screening algorithm. J. Perinatol. 41, 2840–2846 (2021).
Google Scholar
ElHassan, N. O. et al. Early transient hypoglycemia and test performance in at-risk newborns. Am. J. Perinatol. 40, 1096–1105 (2023).
Google Scholar
Yang, G. et al. Neonatal hypoglycemic brain injury is a cause of infantile spasms. Exp. Ther. Med. 11, 2066–2070 (2016).
Google Scholar
Arhan, E. et al. Neonatal hypoglycemia: a wide range of electroclinical manifestations and seizure outcomes. Eur. J. Paediatr. Neurol. 21, 738–744 (2017).
Google Scholar
Karimzadeh, P., Tabarestani, S. & Ghofrani, M. Hypoglycemia-occipital syndrome: a specific neurologic syndrome following neonatal hypoglycemia? J. Child Neurol. 26, 152–159 (2011).
Google Scholar
Jagła, M., Szymońska, I., Starzec, K. & Kwinta, P. Preterm glycosuria – new data from a continuous glucose monitoring system. Neonatology 114, 87–92 (2018).
Google Scholar
Paulsen, M. E. et al. Long-term outcomes after early neonatal hyperglycemia in vlbw infants: a systematic review. Neonatology 118, 509–521 (2021).
Google Scholar
Alsweiler, J. M., Harding, J. E. & Bloomfield, F. H. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics 129, 639–647 (2012).
Google Scholar
Alsweiler, J. M., Kuschel, C. A. & Bloomfield, F. H. Survey of the management of neonatal hyperglycaemia in Australasia. J. Paediatr. Child health 43, 632–635 (2007).
Google Scholar
Godoy, D. A., Di Napoli, M. & Rabinstein, A. A. Treating hyperglycemia in neurocritical patients: benefits and perils. Neurocrit. care 13, 425–438 (2010).
Google Scholar
Macrae, D. et al. A randomized trial of hyperglycemic control in pediatric intensive care. N. Engl. J. Med. 370, 107–118 (2014).
Google Scholar
Blanco, C. L., Baillargeon, J. G., Morrison, R. L. & Gong, A. K. Hyperglycemia in extremely low birth weight infants in a predominantly hispanic population and related morbidities. J. Perinatol. 26, 737–741 (2006).
Google Scholar
Beardsall, K. F. et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the Nirture study. J. Pediatr. 157, 715–719.e713 (2010).
Google Scholar
Dickson, J. L., Chase, J. G., Pretty, C. G., Gunn, C. A. & Alsweiler, J. M. Hyperglycaemic preterm babies have sex differences in insulin secretion. Neonatology 108, 93–98 (2015).
Google Scholar
Harris, A. & Naylor, R. N. Pediatric monogenic diabetes: a unique challenge and opportunity. Pediatr. Ann. 48, e319–e325 (2019).
Google Scholar
Gonzalez Villamizar, J. D., Haapala, J. L., Scheurer, J. M., Rao, R. & Ramel, S. E. Relationships between early nutrition, illness, and later outcomes among infants born preterm with hyperglycemia. J. Pediatr. 223, 29–33.e22 (2020).
Google Scholar
Morgan, C., McGowan, P., Herwitker, S., Hart, A. E. & Turner, M. A. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics 133, e120–e128 (2014).
Google Scholar
Heald, A., Abdel-Latif, M. E. & Kent, A. L. Insulin infusion for hyperglycaemia in very preterm infants appears safe with no effect on morbidity, mortality and long-term neurodevelopmental outcome. J. Matern. Fetal Neonatal Med. 25, 2415–2418 (2012).
Google Scholar
Zamir, I. et al. Hyperglycemia in extremely preterm infants—insulin treatment, mortality and nutrient Intakes. J. Pediatr. 200, 104–110.e101 (2018).
Google Scholar
Tottman, A. C. et al. Long-term outcomes of hyperglycemic preterm infants randomized to tight glycemic control. J. Pediatr. 193, 68–75.e61 (2018).
Google Scholar
Zamir, I. et al. Neonatal hyperglycaemia is associated with worse neurodevelopmental outcomes in extremely preterm infants. Arch. Dis. Child. Fetal neonatal Ed. 106, 460–466 (2021).
Google Scholar
Beardsall, K. et al. Early insulin therapy in very-low-birth-weight infants. N. Engl. J. Med. 359, 1873–1884 (2008).
Google Scholar
Brion, L. P. et al. Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatol. 39, 1131–1139 (2019).
Google Scholar
Guellec, I. et al. Glycemia and neonatal encephalopathy: outcomes in the lytonepal (long-term outcome of neonatal hypoxic encephalopathy in the era of neuroprotective treatment with hypothermia) cohort. J. Pediatr. 257, 113350–113350 (2023).
Google Scholar
Kamino, D. et al. Severity and duration of dysglycemia and brain injury among patients with neonatal encephalopathy. EClinicalMedicine 58, 101914 (2023).
Montaldo, P. et al. Continuous glucose monitoring profile during therapeutic hypothermia in encephalopathic infants with unfavorable outcome. Pediatr. Res. 88, 218–224 (2020).
Google Scholar
Basu, S. K. et al. Early glycemic profile is associated with brain injury patterns on magnetic resonance imaging in hypoxic ischemic encephalopathy. J. Pediatr. 203, 137–143 (2018).
Google Scholar
Wang, J. et al. Association between continuous glucose profile during therapeutic hypothermia and unfavorable outcome in neonates with hypoxic-ischemic encephalopathy. Early Hum. Dev. 187, 105878–105878 (2023).
Google Scholar
Al Shafouri, N., Narvey, M., Srinivasan, G., Vallance, J. & Hansen, G. High glucose variability is associated with poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy. J. Neonatal-Perinat. Med. 8, 119–124 (2015).
Google Scholar
Szymońska, I., Jagła, M., Starzec, K. & Kwinta, P. Glycemic variability in continuous glucose monitoring negatively correlates with gestational age in very low birth weight infants. J. Matern. Fetal neonatal Med. 33, 1–3043 (2020).
Tottman, A. C. M., Alsweiler, J. M. P., Bloomfield, F. H. P., Pan, M. & Harding, J. E. D. Relationship between measures of neonatal glycemia, neonatal illness, and 2-year outcomes in very preterm infants. J. Pediatr. 188, 115–121 (2017).
Google Scholar
Fendler, W., Walenciak, J., Mlynarski, W. & Piotrowski, A. Higher glycemic variability in very low birth weight newborns is associated with greater early neonatal mortality. J. Matern.-fetal Neonatal Med. 25, 1122–1126 (2012).
Google Scholar
Lv, Y., Zhu, L.-L. & Shu, G.-H. Relationship between blood glucose fluctuation and brain damage in the hypoglycemia neonates. Am. J. Perinatol. 35, 946–950 (2018).
Google Scholar
Burakevych, N., McKinlay, C. J. D., Harris, D. L., Alsweiler, J. M. & Harding, J. E. Factors influencing glycaemic stability after neonatal hypoglycaemia and relationship to neurodevelopmental outcome. Sci. Rep. 9, 8132–8132 (2019).
Google Scholar
Butorac Ahel, I. et al. Incidence and risk factors for glucose disturbances in premature infants. Medicines 58, 1295 (2022).
Mola-Schenzle, E. et al. Clinically stable very low birthweight infants are at risk for recurrent tissue glucose fluctuations even after fully established enteral nutrition. Arch. Dis. Child. Fetal Neonatal Ed. 100, F126–F131 (2015).
Google Scholar
Alexandrou, G. et al. Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants. Pediatrics 125, e584–e591 (2010).
Google Scholar
Lei, C., Duan, J., Ge, G. & Zhang, M. Association between neonatal hyperglycemia and retinopathy of prematurity: a meta-analysis. Eur. J. Pediatr. 180, 3433–3442 (2021).
Google Scholar
Rath, C. P., Shivamallappa, M., Muthusamy, S., Rao, S. C. & Patole, S. Outcomes of very preterm infants with neonatal hyperglycaemia: a systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 107, 1–12 (2022).
Au, S. C. L., Tang, S.-M., Rong, S.-S., Chen, L.-J. & Yam, J. C. S. Association between hyperglycemia and retinopathy of prematurity: a systemic review and meta-analysis. Sci. Rep. 5, 9091–9091 (2015).
Google Scholar
Naseh, N. et al. Early hyperglycemia in very preterm infants is associated with reduced white matter volume and worse cognitive and motor outcomes at 2.5 years. Neonatology 119, 745–752 (2022).
Google Scholar
Wikström, S. et al. Carbon dioxide and glucose affect electrocortical background in extremely preterm infants. Pediatrics 127, e1028–e1034 (2011).
Google Scholar
Stensvold, H. J. et al. Early enhanced parenteral nutrition, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr. 169, 1–8 (2015).
Boscarino, G. et al. Neonatal hyperglycemia related to parenteral nutrition affects long-term neurodevelopment in preterm newborn: a prospective cohort study. Nutrients 13, 1930 (2021).
Google Scholar
Ramel, S. E. et al. Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J. Perinatol. 33, 882–886 (2013).
Google Scholar
Scheurer, J. M., Gray, H. L., Demerath, E. W., Rao, R. & Ramel, S. E. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J. Perinatol. 36, 145–150 (2016).
Google Scholar
Kerstjens, J. M., Bocca-Tjeertes, I. F., de Winter, A. F., Reijneveld, S. A. & Bos, A. F. Neonatal morbidities and developmental delay in moderately preterm-born children. Pediatrics 130, e265–e272 (2012).
Google Scholar
Lucas, A., Morley, R. & Cole, T. J. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. BMJ 297, 1304–1308 (1988).
Google Scholar
Tin, W., Brunskill, G., Kelly, T. & Fritz, S. 15-Year follow-up of recurrent “hypoglycemia” in preterm infants. Pediatrics 130, e1497–e1503 (2012).
Google Scholar
Vannucci, R. C. Cerebral carbohydrate and energy metabolism in perinatal hypoxic-ischemic brain damage. Brain Pathol. 2, 229–234 (1992).
Google Scholar
Bahatkar, K. & Aundhakar, C. D. Electrolyte status and plasma glucose levels in birth asphyxia: a case-control study. J. Med. Sci. 41, 017–021 (2021).
Basu, P., Som, S., Choudhuri, N. & Das, H. Contribution of the blood glucose level in perinatal asphyxia. Eur. J. Pediatr. 168, 833–838 (2009).
Google Scholar
Puzone, S. et al. Hypoglycaemia and hyperglycaemia in neonatal encephalopathy: a systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 109, 18–25 (2024).
Tam, E. W. Y. M. M. A. S. F. et al. Hypoglycemia is associated with increased risk for brain injury and adverse neurodevelopmental outcome in neonates at risk for encephalopathy. J. Pediatr. 161, 88–93 (2012).
Google Scholar
Wong, D. S. T. et al. Brain injury patterns in hypoglycemia in neonatal encephalopathy. Am. J. Neuroradiol. 34, 1456–1461 (2013).
Google Scholar
Tam, E. W. Y. et al. Hyperglycemia associated with acute brain injury in neonatal encephalopathy. NeuroImage Clin. 32, 102835–102835 (2021).
Google Scholar
Kamino, D. et al. Abnormalities in evoked potentials associated with abnormal glycemia and brain injury in neonatal hypoxic-ischemic encephalopathy. Clin. Neurophysiol. 132, 307–313 (2021).
Google Scholar
Barkovich, A. J., Ali, F. A., Rowley, H. A. & Bass, N. Imaging patterns of neonatal hypoglycemia. Am. J. Neuroradiol. 19, 523–528 (1998).
Google Scholar
Basu, S. K. et al. Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the coolcap study. Arch. Dis. Child. Fetal Neonatal Ed. 101, F149–F155 (2016).
Google Scholar
Salhab, W. A., Wyckoff, M. H., Laptook, A. R. & Perlman, J. M. Initial hypoglycemia and neonatal brain injury in term infants with severe fetal acidemia. Pediatrics 114, 361–366 (2004).
Google Scholar
Mietzsch, U. et al. Early glycemic state and outcomes of neonates with hypoxic-ischemic encephalopathy. Pediatrics 152, e2022060965 (2023).
Parmentier, C. E. J. et al. Hypoglycemia in infants with hypoxic-ischemic encephalopathy is associated with additional brain injury and worse neurodevelopmental outcome. J. Pediatr. 245, 30–38.e31 (2022).
Google Scholar
Hawdon, J. M. Identification and management of neonatal hypoglycemia in the full-term infant. British Association of Perinatal Medicine framework for practice, 2017. J. Hum. Lactation 35, 521–523 (2019).