1 34

Neonatal dysglycemia: a review of dysglycemia in relation to brain health and neurodevelopmental outcomes

  • Vannucci, R. C. & Vannucci, S. J. Glucose metabolism in the developing brain. Semin. Perinatol. 24, 107–115 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Amendoeira, S., McNair, C., Saini, J. & Habib, S. Glucose homeostasis and the neonatal brain: a sweet relationship. Neonatal Netw. 39, 137–146 (2020).

    PubMed 

    Google Scholar 

  • Stanley, C. A., Weston, P. J., Harris, D. L., De León, D. D. & Harding, J. E. Role of beta-hydroxybutyrate measurement in the evaluation of plasma glucose concentrations in newborn infants. Arch. Dis. Childh. Fetal Neonatal Ed. waz (2024).

  • Roeper, M., Hoermann, H., Kummer, S. & Meissner, T. Neonatal hypoglycemia: lack of evidence for a safe management. Front. Endocrinol. 14, 1179102–1179102 (2023).

    Google Scholar 

  • Harris, D. L., Weston, P. J., Gamble, G. D. & Harding, J. E. Glucose profiles in healthy term infants in the first 5 days: the glucose in well babies (Glow) study. J. Pediatr. 223, 34-41.e4 (2020).

  • Cornblath, M. & Reisner, S. H. Blood glucose in the neonate and its clinical significance. N. Engl. J. Med. 273, 378 (1965).

    CAS 
    PubMed 

    Google Scholar 

  • Srinivasan, G., Pildes, R. S., Cattamanchi, G., Voora, S. & Lilien, L. D. Plasma glucose values in normal neonates: a new look. J. Pediatr. 109, 114–117 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Wight, N. E. Hypoglycemia in breastfed neonates. Breastfeed. Med. 1, 253–262 (2006).

    PubMed 

    Google Scholar 

  • Thornton, P. S. M. B. B. et al. Recommendations from the Pediatric Endocrine Society for evaluation and management of persistent hypoglycemia in neonates, infants, and children. J. Pediatr. 167, 238–245 (2015).

    PubMed 

    Google Scholar 

  • De Angelis, L. C. et al. Neonatal hypoglycemia and brain vulnerability. Front. Endocrinol. 12, 634305–634305 (2021).

    Google Scholar 

  • Devraj, K. et al. Glut-1 glucose transporters in the blood-brain barrier: differential phosphorylation. J. Neurosci. Res. 89, 1913–1925 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Simpson, I. A., Carruthers, A. & Vannucci, S. J. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J. Cereb. Blood Flow. Metab. 27, 1766–1791 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Mergenthaler, P., Lindauer, U., Dienel, G. A. & Meisel, A. Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci. 36, 587–597 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rao, R., Nashawaty, M., Fatima, S., Ennis, K. & Tkac, I. Neonatal hyperglycemia alters the neurochemical profile, dendritic arborization and gene expression in the developing rat hippocampus. NMR Biomed. 31, e3910-n/a (2018).

  • Harris, D. L., Weston, P. J. & Harding, J. E. Lactate, rather than ketones, may provide alternative cerebral fuel in hypoglycaemic newborns. Arch. Dis. Child. Fetal Neonatal Ed. 100, F161 (2015).

    PubMed 

    Google Scholar 

  • Harris, D. L., Weston, P. J. & Harding, J. E. Alternative cerebral fuels in the first five days in healthy term infants: the glucose in well babies (Glow) study. J. pediatrics 231, 81–86.e82 (2021).

    CAS 

    Google Scholar 

  • Maran, A. et al. Brain function rescue effect of lactate following hypoglycaemia is not an adaptation process in both normal and type I diabetic subjects. Diabetologia 43, 733–741 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Galderisi, A. et al. Glucose-to-lactate ratio and neurodevelopment in infants with hypoxic-ischemic encephalopathy: an observational study. Eur. J. Pediatr. 182, 837–844 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Burke, S. P. & Nadler, J. V. Effects of glucose deficiency on glutamate/aspartate release and excitatory synaptic responses in the hippocampal Ca1 area in vitro. Brain Res. 500, 333–342 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • Auer, R. N. Progress review: hypoglycemic brain damage. Stroke 17, 699–708 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Satrom, K. M. et al. Neonatal hyperglycemia induces cxcl10/cxcr3 signaling and microglial activation and impairs long-term synaptogenesis in the hippocampus and alters behavior in rats. J. Neuroinflamm. 15, 82–82 (2018).

    Google Scholar 

  • Chugani, H. T. A critical period of brain development: studies of cerebral glucose utilization with pet. Prev. Med. 27, 184–188 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Howarth, C., Gleeson, P. & Attwell, D. Updated energy budgets for neural computation in the neocortex and cerebellum. J Cereb Blood Flow Metab. 32, 1222–1232 (2012).

  • Harris, J. J., Jolivet, R. & Attwell, D. Synaptic energy use and supply. Neuron 75, 762–777 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Pryds, O., Greisen, G. & Friis-Hansen, B. Compensatory increase of cbf in preterm infants during hypoglycaemia. Acta Pædiatr. Scand. 77, 632–637 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • Mesotten, D. et al. Espghan/espen/espr/cspen guidelines on pediatric parenteral nutrition: carbohydrates. Clin. Nutr. 37, 2337–2343 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Tas, E., Garibaldi, L. & Muzumdar, R. Glucose homeostasis in newborns: an endocrinology perspective. Neoreviews 21, e14 (2020).

    PubMed 

    Google Scholar 

  • Angelis, D., Jaleel, M. A. & Brion, L. P. Hyperglycemia and prematurity: a narrative review. Pediatr. Res. 94, 892–903 (2023).

  • van Kempen, A. A. M. W., Ackermans, M. T., Endert, E., Kok, J. H. & Sauerwein, H. P. Glucose production in response to glucagon is comparable in preterm Aga and Sga infants. Clin. Nutr. 24, 727–736 (2005).

    PubMed 

    Google Scholar 

  • Van Kempen, A. A. M. W. et al. Adaptation of glucose production and gluconeogenesis to diminishing glucose infusion in preterm infants at varying gestational ages. Pediatr. Res. 53, 628–634 (2003).

    PubMed 

    Google Scholar 

  • Sauer, P. J. J., Van Aerde, J. E. E., Pencharz, P. B., Smith, J. M. & Swyer, P. R. Glucose oxidation rates in newborn infants measured with indirect calorimetry and [U-13clglucose. Clin. Sci. 70, 587–593 (1986).

    CAS 

    Google Scholar 

  • Forsyth, J. S. & Crighton, A. Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants. Arch. Dis. Child. 73, F4–F7 (1995).

    CAS 

    Google Scholar 

  • Hubbard, E. M. & Hay, W. W. The term newborn: hypoglycemia. Clin. Perinatol. 48, 665–679 (2021).

    PubMed 

    Google Scholar 

  • Beardsall, K. Measurement of glucose levels in the newborn. Early Hum. Dev. 86, 263–267 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Roth-Kleiner, M., Stadelmann Diaw, C., Urfer, J., Ruffieux, C. & Werner, D. Evaluation of different poct devices for glucose measurement in a clinical neonatal setting. Eur. J. Pediatr. 169, 1387–1395 (2010).

    PubMed 

    Google Scholar 

  • Wight, N. E. Academy of Breastfeeding Medicine Abm clinical protocol #1: Guidelines for glucose monitoring and treatment of hypoglycemia in term and late preterm neonates, revised 2021. Breastfeed. Med. 16, 353–365 (2021).

    PubMed 

    Google Scholar 

  • Adamkin, D. H. Clinical report—postnatal glucose homeostasis in late-preterm and term infants. Pediatrics 127, 575–579 (2011).

    PubMed 

    Google Scholar 

  • Wackernagel, D. et al. Swedish national guideline for prevention and treatment of neonatal hypoglycaemia in newborn infants with gestational age ≥35 weeks. Acta Paediatr. 109, 31–44 (2020).

    PubMed 

    Google Scholar 

  • Narvey, M. R. & Marks, S. D. The screening and management of newborns at risk for low blood glucose. Paediatr. Child Health 24, 536–544 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Beardsall, K. et al. Validation of the continuous glucose monitoring sensor in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 98, F136–F140 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Tabery, K. et al. Feasibility and safety of continuous glucose monitoring in infants at risk of hypoglycemia in a rooming-in setting. Fetal Pediatr. Pathol. 41, 627–633 (2022).

    PubMed 

    Google Scholar 

  • Kalogeropoulou, M.-S., Iglesias-Platas, I. & Beardsall, K. Should continuous glucose monitoring be used to manage neonates at risk of hypoglycaemia? Front. Pediatr. 11, 1115228–1115228 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernández Martínez, M. D. M. et al. Monitoring the frequency and duration of hypoglycemia in preterm infants and identifying associated factors. Fetal Pediatr. Pathol. 40, 131–141 (2021).

    PubMed 

    Google Scholar 

  • Beardsall, K. et al. Real-time continuous glucose monitoring in preterm infants (react): an international, open-label, randomised controlled trial. Lancet Child Adolesc. Health 5, 265 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galderisi, A. et al. Continuous glucose monitoring in very preterm infants: a randomized controlled trial. Pediatrics 140, 1 (2017).

    Google Scholar 

  • Kalogeropoulou, M.-S., Thomson, L. & Beardsall, K. Continuous glucose monitoring during therapeutic hypothermia for hypoxic ischaemic encephalopathy: a feasibility study. Arch. Dis. Child. Fetal Neonatal Ed. 108, 309–315 (2023).

    PubMed 

    Google Scholar 

  • Goldberg, P. A. et al. Experience with the continuous glucose monitoring system in a medical intensive care unit. Diabetes Technol. Ther. 6, 339 (2004).

    PubMed 

    Google Scholar 

  • McKinlay, C. J. D. et al. Neonatal glycemia and neurodevelopmental outcomes at 2 years. N. Engl. J. Med. 373, 1507–1518 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Uettwiller, F. et al. Real-time continuous glucose monitoring reduces the duration of hypoglycemia episodes: a randomized trial in very low birth weight neonates. PloS one 10, e0116255–e0116255 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dinu, D. & Rozance, P. Real‐time continuous glucose monitoring in preterm infants (react): an international, open‐label, randomised, controlled trial. Acta Paediatr. 110, 2656–2657 (2021).

    PubMed 

    Google Scholar 

  • Ranger, M. et al. Neonatal pain-related stress predicts cortical thickness at age 7 years in children born very preterm. PloS ONE 8, e76702–e76702 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoseth, E., Joergensen, A., Ebbesen, F. & Moeller, M. Blood glucose levels in a population of healthy, breast fed, term infants of appropriate size for gestational age. Arch. Dis. Child. Fetal Neonatal Ed. 83, F117–F119 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koh, T. H., Aynsley-Green, A., Tarbit, M. & Eyre, J. A. Neural dysfunction during hypoglycaemia. Arch. Dis. Child. 63, 1353–1358 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harding, J. E., Harris, D. L., Hegarty, J. E., Alsweiler, J. M. & McKinlay, C. J. D. An emerging evidence base for the management of neonatal hypoglycaemia. Early Hum. Dev. 104, 51–56 (2017).

    PubMed 

    Google Scholar 

  • Harris, D. L. M., Weston, P. J. M. & Harding, J. E. M. Incidence of neonatal hypoglycemia in babies identified as at risk. J. Pediatr. 161, 787–791 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Improda, N. et al. Perinatal asphyxia and hypothermic treatment from the endocrine perspective. Front. Endocrinol. 14, 1249700–1249700 (2023).

    Google Scholar 

  • Hoermann, H. et al. Reliability and observer dependence of signs of neonatal hypoglycemia. J. Pediatr. 245, 22–29.e22 (2022).

    PubMed 

    Google Scholar 

  • Cummings, C. T., Ritter, V., LeBlanc, S. & Sutton, A. G. Evaluation of risk factors and approach to screening for asymptomatic neonatal hypoglycemia. Neonatology 119, 77–83 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Giri, D., Hawton, K. & Senniappan, S. Congenital hyperinsulinism: recent updates on molecular mechanisms, diagnosis and management. J. Pediatr. Endocrinol. Metab. 35, 279–296 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Shah, P. M. D., Rahman, S. A. P., Demirbilek, H. M. D., Güemes, M. M. D. & Hussain, K. P. Hyperinsulinaemic hypoglycaemia in children and adults. Lancet Diabetes Endocrinol. 5, 729–742 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Muukkonen, L., Männistö, J., Jääskeläinen, J., Hannonen, R. & Huopio, H. The effect of hypoglycaemia on neurocognitive outcome in children and adolescents with transient or persistent congenital hyperinsulinism. Dev. Med. Child Neurol. 61, 451–457 (2019).

    PubMed 

    Google Scholar 

  • Avatapalle, H. B. et al. Abnormal neurodevelopmental outcomes are common in children with transient congenital hyperinsulinism. Front. Endocrinol. 4, 60–60 (2013).

    Google Scholar 

  • Männistö, J. M. E., Jääskeläinen, J., Otonkoski, T. & Huopio, H. Long-term outcome and treatment in persistent and transient congenital hyperinsulinism: a Finnish population-based study. J. Clin. Endocrinol. Metab. 106, e1542–e1551 (2021).

    PubMed 

    Google Scholar 

  • Tam, E. W. Y. et al. Occipital lobe injury and cortical visual outcomes after neonatal hypoglycemia. Pediatrics 122, 507–512 (2008).

    PubMed 

    Google Scholar 

  • Pinchefsky, E. F. et al. Hyperglycemia and glucose variability are associated with worse brain function and seizures in neonatal encephalopathy: a prospective cohort study. J. Pediatr. 209, 23–32 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, D. L. M. et al. Cot-side electroencephalography monitoring is not clinically useful in the detection of mild neonatal hypoglycemia. J. Pediatr. 159, 755–760.e751 (2011).

    PubMed 

    Google Scholar 

  • Roeper, M. et al. Risk factors for adverse neurodevelopment in transient or persistent congenital hyperinsulinism. Front. Endocrinol. 11, 580642–580642 (2020).

    Google Scholar 

  • Burns, C. M., Rutherford, M. A., Boardman, J. P. & Cowan, F. M. Patterns of cerebral injury and neurodevelopmental outcomes after symptomatic neonatal hypoglycemia. Pediatrics 122, 65–74 (2008).

    PubMed 

    Google Scholar 

  • Singh, M. et al. Neurodevelopmental outcome of asymptomatic & symptomatic babies with neonatal hypoglycaemia. Indian J. Med. Res. 94, 6 (1991).

    CAS 
    PubMed 

    Google Scholar 

  • Koivisto, M., Blanco-Sequeiros, M. & Krause, U. Neonatal symptomatic and asymptomatic hypoglycaemia: a follow-up study of 151 children. Dev. Med. child Neurol. 14, 603 (1972).

    CAS 
    PubMed 

    Google Scholar 

  • Spar, J. A., Lewine, J. D. & Orrison, W. W. Jr. Neonatal hypoglycemia: CT and Mr Findings. Am. J. Neuroradiol. 15, 1477–1478 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musson, R. E. et al. Diffusion-weighted imaging and magnetic resonance spectroscopy findings in a case of neonatal hypoglycaemia. Dev. Med. Child Neurol. 51, 653–654 (2009).

    PubMed 

    Google Scholar 

  • Kim, S. Y., Goo, H. W., Lim, K. H., Kim, S. T. & Kim, K. S. Neonatal hypoglycaemic encephalopathy: diffusion-weighted imaging and proton Mr spectroscopy. Pediatr. Radiol. 36, 144–148 (2006).

    PubMed 

    Google Scholar 

  • Caraballo, R. H. et al. Symptomatic occipital lobe epilepsy following neonatal hypoglycemia. Pediatr. Neurol. 31, 24–29 (2004).

    PubMed 

    Google Scholar 

  • Prasad, S. & Dinkin, M. Higher cortical visual disorders. Contin 25, 1329–1361 (2019).

    Google Scholar 

  • Edwards, T. et al. Oral dextrose gel for the treatment of hypoglycaemia in newborn infants. Cochrane Database Syst. Rev. 3, CD011027 (2022).

    PubMed 

    Google Scholar 

  • Harris, D. L. et al. Outcome at 2 years after dextrose gel treatment for neonatal hypoglycemia: follow-up of a randomized trial. J. Pediatr. 170, 54 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • van Kempen, A. A. M. W. et al. Lower versus traditional treatment threshold for neonatal hypoglycemia. N. Engl. J. Med. 382, 534–544 (2020).

    PubMed 

    Google Scholar 

  • Griffith, R. et al. Two-year outcomes after dextrose gel prophylaxis for neonatal hypoglycaemia. Arch. Dis. Child. Fetal Neonatal Ed. 106, 278–285 (2021).

    PubMed 

    Google Scholar 

  • Edwards, T. et al. Neurocognitive outcomes at age 2 years after neonatal hypoglycemia in a cohort of participants from the HPOD randomized trial. JAMA Netw. Open 5, e2235989–e2235989 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • McKinlay, C. J. D. et al. Association of neonatal glycemia with neurodevelopmental outcomes at 4.5 years. JAMA Pediatr. 171, 972–983 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harris, D. L., Weston, P. J., Signal, M., Chase, J. G. & Harding, J. E. Dextrose gel for neonatal hypoglycaemia (the sugar babies study): a randomised, double-blind, placebo-controlled trial. Lancet 382, 2077 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Shah, R. et al. Association of neonatal hypoglycemia with academic performance in mid-childhood. JAMA 327, 1158–1170 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaiser, J. R. et al. Association between transient newborn hypoglycemia and fourth-grade achievement test proficiency: a population-based study. JAMA Pediatr. 169, 913–921 (2015).

    PubMed 

    Google Scholar 

  • Sivarajan, M. et al. Decreasing early hypoglycemia frequency in at-risk newborns after implementing a new hypoglycemia screening algorithm. J. Perinatol. 41, 2840–2846 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • ElHassan, N. O. et al. Early transient hypoglycemia and test performance in at-risk newborns. Am. J. Perinatol. 40, 1096–1105 (2023).

    PubMed 

    Google Scholar 

  • Yang, G. et al. Neonatal hypoglycemic brain injury is a cause of infantile spasms. Exp. Ther. Med. 11, 2066–2070 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arhan, E. et al. Neonatal hypoglycemia: a wide range of electroclinical manifestations and seizure outcomes. Eur. J. Paediatr. Neurol. 21, 738–744 (2017).

    PubMed 

    Google Scholar 

  • Karimzadeh, P., Tabarestani, S. & Ghofrani, M. Hypoglycemia-occipital syndrome: a specific neurologic syndrome following neonatal hypoglycemia? J. Child Neurol. 26, 152–159 (2011).

    PubMed 

    Google Scholar 

  • Jagła, M., Szymońska, I., Starzec, K. & Kwinta, P. Preterm glycosuria – new data from a continuous glucose monitoring system. Neonatology 114, 87–92 (2018).

    PubMed 

    Google Scholar 

  • Paulsen, M. E. et al. Long-term outcomes after early neonatal hyperglycemia in vlbw infants: a systematic review. Neonatology 118, 509–521 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Alsweiler, J. M., Harding, J. E. & Bloomfield, F. H. Tight glycemic control with insulin in hyperglycemic preterm babies: a randomized controlled trial. Pediatrics 129, 639–647 (2012).

    PubMed 

    Google Scholar 

  • Alsweiler, J. M., Kuschel, C. A. & Bloomfield, F. H. Survey of the management of neonatal hyperglycaemia in Australasia. J. Paediatr. Child health 43, 632–635 (2007).

    PubMed 

    Google Scholar 

  • Godoy, D. A., Di Napoli, M. & Rabinstein, A. A. Treating hyperglycemia in neurocritical patients: benefits and perils. Neurocrit. care 13, 425–438 (2010).

    PubMed 

    Google Scholar 

  • Macrae, D. et al. A randomized trial of hyperglycemic control in pediatric intensive care. N. Engl. J. Med. 370, 107–118 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Blanco, C. L., Baillargeon, J. G., Morrison, R. L. & Gong, A. K. Hyperglycemia in extremely low birth weight infants in a predominantly hispanic population and related morbidities. J. Perinatol. 26, 737–741 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Beardsall, K. F. et al. Prevalence and determinants of hyperglycemia in very low birth weight infants: cohort analyses of the Nirture study. J. Pediatr. 157, 715–719.e713 (2010).

    PubMed 

    Google Scholar 

  • Dickson, J. L., Chase, J. G., Pretty, C. G., Gunn, C. A. & Alsweiler, J. M. Hyperglycaemic preterm babies have sex differences in insulin secretion. Neonatology 108, 93–98 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, A. & Naylor, R. N. Pediatric monogenic diabetes: a unique challenge and opportunity. Pediatr. Ann. 48, e319–e325 (2019).

    PubMed 

    Google Scholar 

  • Gonzalez Villamizar, J. D., Haapala, J. L., Scheurer, J. M., Rao, R. & Ramel, S. E. Relationships between early nutrition, illness, and later outcomes among infants born preterm with hyperglycemia. J. Pediatr. 223, 29–33.e22 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Morgan, C., McGowan, P., Herwitker, S., Hart, A. E. & Turner, M. A. Postnatal head growth in preterm infants: a randomized controlled parenteral nutrition study. Pediatrics 133, e120–e128 (2014).

    PubMed 

    Google Scholar 

  • Heald, A., Abdel-Latif, M. E. & Kent, A. L. Insulin infusion for hyperglycaemia in very preterm infants appears safe with no effect on morbidity, mortality and long-term neurodevelopmental outcome. J. Matern. Fetal Neonatal Med. 25, 2415–2418 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Zamir, I. et al. Hyperglycemia in extremely preterm infants—insulin treatment, mortality and nutrient Intakes. J. Pediatr. 200, 104–110.e101 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Tottman, A. C. et al. Long-term outcomes of hyperglycemic preterm infants randomized to tight glycemic control. J. Pediatr. 193, 68–75.e61 (2018).

    PubMed 

    Google Scholar 

  • Zamir, I. et al. Neonatal hyperglycaemia is associated with worse neurodevelopmental outcomes in extremely preterm infants. Arch. Dis. Child. Fetal neonatal Ed. 106, 460–466 (2021).

    PubMed 

    Google Scholar 

  • Beardsall, K. et al. Early insulin therapy in very-low-birth-weight infants. N. Engl. J. Med. 359, 1873–1884 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Brion, L. P. et al. Adjustable feedings plus accurate serial length measurements decrease discharge weight-length disproportion in very preterm infants: quality improvement project. J. Perinatol. 39, 1131–1139 (2019).

    PubMed 

    Google Scholar 

  • Guellec, I. et al. Glycemia and neonatal encephalopathy: outcomes in the lytonepal (long-term outcome of neonatal hypoxic encephalopathy in the era of neuroprotective treatment with hypothermia) cohort. J. Pediatr. 257, 113350–113350 (2023).

    PubMed 

    Google Scholar 

  • Kamino, D. et al. Severity and duration of dysglycemia and brain injury among patients with neonatal encephalopathy. EClinicalMedicine 58, 101914 (2023).

  • Montaldo, P. et al. Continuous glucose monitoring profile during therapeutic hypothermia in encephalopathic infants with unfavorable outcome. Pediatr. Res. 88, 218–224 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Basu, S. K. et al. Early glycemic profile is associated with brain injury patterns on magnetic resonance imaging in hypoxic ischemic encephalopathy. J. Pediatr. 203, 137–143 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Association between continuous glucose profile during therapeutic hypothermia and unfavorable outcome in neonates with hypoxic-ischemic encephalopathy. Early Hum. Dev. 187, 105878–105878 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Al Shafouri, N., Narvey, M., Srinivasan, G., Vallance, J. & Hansen, G. High glucose variability is associated with poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy. J. Neonatal-Perinat. Med. 8, 119–124 (2015).

    CAS 

    Google Scholar 

  • Szymońska, I., Jagła, M., Starzec, K. & Kwinta, P. Glycemic variability in continuous glucose monitoring negatively correlates with gestational age in very low birth weight infants. J. Matern. Fetal neonatal Med. 33, 1–3043 (2020).

    Google Scholar 

  • Tottman, A. C. M., Alsweiler, J. M. P., Bloomfield, F. H. P., Pan, M. & Harding, J. E. D. Relationship between measures of neonatal glycemia, neonatal illness, and 2-year outcomes in very preterm infants. J. Pediatr. 188, 115–121 (2017).

    PubMed 

    Google Scholar 

  • Fendler, W., Walenciak, J., Mlynarski, W. & Piotrowski, A. Higher glycemic variability in very low birth weight newborns is associated with greater early neonatal mortality. J. Matern.-fetal Neonatal Med. 25, 1122–1126 (2012).

    PubMed 

    Google Scholar 

  • Lv, Y., Zhu, L.-L. & Shu, G.-H. Relationship between blood glucose fluctuation and brain damage in the hypoglycemia neonates. Am. J. Perinatol. 35, 946–950 (2018).

    PubMed 

    Google Scholar 

  • Burakevych, N., McKinlay, C. J. D., Harris, D. L., Alsweiler, J. M. & Harding, J. E. Factors influencing glycaemic stability after neonatal hypoglycaemia and relationship to neurodevelopmental outcome. Sci. Rep. 9, 8132–8132 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Butorac Ahel, I. et al. Incidence and risk factors for glucose disturbances in premature infants. Medicines 58, 1295 (2022).

    Google Scholar 

  • Mola-Schenzle, E. et al. Clinically stable very low birthweight infants are at risk for recurrent tissue glucose fluctuations even after fully established enteral nutrition. Arch. Dis. Child. Fetal Neonatal Ed. 100, F126–F131 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Alexandrou, G. et al. Early hyperglycemia is a risk factor for death and white matter reduction in preterm infants. Pediatrics 125, e584–e591 (2010).

    PubMed 

    Google Scholar 

  • Lei, C., Duan, J., Ge, G. & Zhang, M. Association between neonatal hyperglycemia and retinopathy of prematurity: a meta-analysis. Eur. J. Pediatr. 180, 3433–3442 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Rath, C. P., Shivamallappa, M., Muthusamy, S., Rao, S. C. & Patole, S. Outcomes of very preterm infants with neonatal hyperglycaemia: a systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 107, 1–12 (2022).

    Google Scholar 

  • Au, S. C. L., Tang, S.-M., Rong, S.-S., Chen, L.-J. & Yam, J. C. S. Association between hyperglycemia and retinopathy of prematurity: a systemic review and meta-analysis. Sci. Rep. 5, 9091–9091 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naseh, N. et al. Early hyperglycemia in very preterm infants is associated with reduced white matter volume and worse cognitive and motor outcomes at 2.5 years. Neonatology 119, 745–752 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Wikström, S. et al. Carbon dioxide and glucose affect electrocortical background in extremely preterm infants. Pediatrics 127, e1028–e1034 (2011).

    PubMed 

    Google Scholar 

  • Stensvold, H. J. et al. Early enhanced parenteral nutrition, hyperglycemia, and death among extremely low-birth-weight infants. JAMA Pediatr. 169, 1–8 (2015).

    Google Scholar 

  • Boscarino, G. et al. Neonatal hyperglycemia related to parenteral nutrition affects long-term neurodevelopment in preterm newborn: a prospective cohort study. Nutrients 13, 1930 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramel, S. E. et al. Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J. Perinatol. 33, 882–886 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Scheurer, J. M., Gray, H. L., Demerath, E. W., Rao, R. & Ramel, S. E. Diminished growth and lower adiposity in hyperglycemic very low birth weight neonates at 4 months corrected age. J. Perinatol. 36, 145–150 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kerstjens, J. M., Bocca-Tjeertes, I. F., de Winter, A. F., Reijneveld, S. A. & Bos, A. F. Neonatal morbidities and developmental delay in moderately preterm-born children. Pediatrics 130, e265–e272 (2012).

    PubMed 

    Google Scholar 

  • Lucas, A., Morley, R. & Cole, T. J. Adverse neurodevelopmental outcome of moderate neonatal hypoglycaemia. BMJ 297, 1304–1308 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tin, W., Brunskill, G., Kelly, T. & Fritz, S. 15-Year follow-up of recurrent “hypoglycemia” in preterm infants. Pediatrics 130, e1497–e1503 (2012).

    PubMed 

    Google Scholar 

  • Vannucci, R. C. Cerebral carbohydrate and energy metabolism in perinatal hypoxic-ischemic brain damage. Brain Pathol. 2, 229–234 (1992).

    CAS 
    PubMed 

    Google Scholar 

  • Bahatkar, K. & Aundhakar, C. D. Electrolyte status and plasma glucose levels in birth asphyxia: a case-control study. J. Med. Sci. 41, 017–021 (2021).

    Google Scholar 

  • Basu, P., Som, S., Choudhuri, N. & Das, H. Contribution of the blood glucose level in perinatal asphyxia. Eur. J. Pediatr. 168, 833–838 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Puzone, S. et al. Hypoglycaemia and hyperglycaemia in neonatal encephalopathy: a systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 109, 18–25 (2024).

    Google Scholar 

  • Tam, E. W. Y. M. M. A. S. F. et al. Hypoglycemia is associated with increased risk for brain injury and adverse neurodevelopmental outcome in neonates at risk for encephalopathy. J. Pediatr. 161, 88–93 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wong, D. S. T. et al. Brain injury patterns in hypoglycemia in neonatal encephalopathy. Am. J. Neuroradiol. 34, 1456–1461 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tam, E. W. Y. et al. Hyperglycemia associated with acute brain injury in neonatal encephalopathy. NeuroImage Clin. 32, 102835–102835 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kamino, D. et al. Abnormalities in evoked potentials associated with abnormal glycemia and brain injury in neonatal hypoxic-ischemic encephalopathy. Clin. Neurophysiol. 132, 307–313 (2021).

    PubMed 

    Google Scholar 

  • Barkovich, A. J., Ali, F. A., Rowley, H. A. & Bass, N. Imaging patterns of neonatal hypoglycemia. Am. J. Neuroradiol. 19, 523–528 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Basu, S. K. et al. Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the coolcap study. Arch. Dis. Child. Fetal Neonatal Ed. 101, F149–F155 (2016).

    PubMed 

    Google Scholar 

  • Salhab, W. A., Wyckoff, M. H., Laptook, A. R. & Perlman, J. M. Initial hypoglycemia and neonatal brain injury in term infants with severe fetal acidemia. Pediatrics 114, 361–366 (2004).

    PubMed 

    Google Scholar 

  • Mietzsch, U. et al. Early glycemic state and outcomes of neonates with hypoxic-ischemic encephalopathy. Pediatrics 152, e2022060965 (2023).

  • Parmentier, C. E. J. et al. Hypoglycemia in infants with hypoxic-ischemic encephalopathy is associated with additional brain injury and worse neurodevelopmental outcome. J. Pediatr. 245, 30–38.e31 (2022).

    PubMed 

    Google Scholar 

  • Hawdon, J. M. Identification and management of neonatal hypoglycemia in the full-term infant. British Association of Perinatal Medicine framework for practice, 2017. J. Hum. Lactation 35, 521–523 (2019).

    Google Scholar