The indoors microbiome and human health

  • Blaustein, R. A. et al. Toothbrush microbiomes feature a meeting ground for human verbal and environmental microbiota. Microbiome 9, 32 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ben Maamar, S., Hu, J. & Hartmann, E. M. Implications of indoor microbial ecology and evolution on antibiotic resistance. J. Expo. Sci. Environ. Epidemiol. 30, 1–15 (2020).

    PubMed 

    Google Scholar 

  • Parajuli, A. et al. Urbanization reduces transfer of diverse environmental microbiota indoors. Front. Microbiol. 9, 84 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strachan, D. P. Hay fever, hygiene, and household size. BMJ 299, 1259–1260 (1989).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qin, N. et al. Longitudinal survey of microbiome associated with particulate matter in a megacity. Genome Biol. 21, 55 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibbons, S. M. The built environment is a microbial wasteland. mSystems 1, e00033–e00116 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishaq, S. L. et al. Introducing the microbes and social equity working group: considering the microbial components of social, environmental, and health justice. mSystems 6, e0047121 (2021).

    PubMed 

    Google Scholar 

  • Gilbert, J. A. & Stephens, B. Microbiology of the built environment. Nat. Rev. Microbiol. 16, 661–670 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Prussin, A. J. II & Marr, L. C. Sources of airborne microorganisms in the built environment. Microbiome 3, 78 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pausan, M.-R., Blohs, M., Mahnert, A. & Moissl-Eichinger, C. The sanitary indoor environment — a potential source for intact human-associated anaerobes. npj Biofilms Microbiomes 8, 44 (2022). This study demonstrates that most of bacterial and archaeal taxa in the built environment are of human origin and that aerobic and stress-resistant taxa have a survival advantage.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Scaturro, M. et al. Premise plumbing bacterial communities in four European cities and their association with Legionella. Front. Microbiomes https://doi.org/10.3389/frmbi.2023.1170824 (2023).

  • Stein, M. M. et al. Innate immunity and asthma risk in Amish and Hutterite farm children. N. Engl. J. Med. 375, 411–421 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lax, S. et al. Bacterial colonization and succession in a newly opened hospital. Sci. Transl. Med. 9, eaah6500 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Qian, J., Hospodsky, D., Yamamoto, N., Nazaroff, W. W. & Peccia, J. Size-resolved emission rates of airborne microbio and fungi in an occupied classroom. Indoor Air 22, 339–351 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lax, S. et al. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345, 1048–1052 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Young, G. R., Sherry, A. & Smith, D. L. Built environment microbiomes transition from outdoor to human-associated communities after construction and commissioning. Sci. Rep. 13, 15854 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kembel, S. W. et al. Architectural design influences the diversity and structure of the built environment microbiome. ISME J. 6, 1469–1479 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hoisington, A. J. et al. Ten questions concerning the built environment and mental health. Build. Environ. 155, 58–69 (2019).

    Google Scholar 

  • Meadow, J. F. et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air 24, 41–48 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Carstens, C. K., Salazar, J. K., Sharma, S. V., Chan, W. & Darkoh, C. Evaluation of the kitchen microbiome and food safety behaviors of predominantly low-income families. Front. Microbiol. 13, 987925 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Flores, G. E. et al. Diversity, distribution and sources of microbio in residential kitchens. Environ. Microbiol. 15, 588–596 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Adams, R. I., Bateman, A. C., Bik, H. M. & Meadow, J. F. Microbiota of the indoor environment: a meta-analysis. Microbiome 3, 49 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gibbons, S. M. et al. Ecological succession and viability of human-associated microbiota on restroom surfaces. Appl. Environ. Microbiol. 81, 765–773 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cox, J. et al. Associations of observed home dampness and mold with the fungal and bacterial dust microbiomes. Environ. Sci. Process. Impacts 23, 491–500 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Jayaprakash, B. et al. Indoor microbiota in severely moisture damaged homes and the impact of interventions. Microbiome 5, 138 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lai, P. S. et al. The classroom microbiome and asthma morbidity in children attending 3 inner-city schools. J. Allergy Clin. Immunol. 141, 2311–2313 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Green, J. L. Can bioinformed design promote healthy indoor ecosystems? Indoor Air 24, 113–115 (2014).

    PubMed 

    Google Scholar 

  • Jin, L. et al. Integrating environmental dimensions of ‘One Health’ to combat antimicrobial resistance: essential research needs. Environ. Sci. Technol. 56, 14871–14874 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Fahimipour, A. K. et al. Antimicrobial chemicals associate with microbial function and antibiotic resistance indoors. mSystems 3, e00200-18 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartmann, E. M. et al. Antimicrobial chemicals are associated with elevated antibiotic resistance genes in the indoor dust microbiome. Environ. Sci. Technol. 50, 9807–9815 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahnert, A. et al. Man-made microbial resistances in built environments. Nat. Commun. 10, 968 (2019). This study demonstrates that increasing isolation within an indoor space is associated with decreased microbial diversity and a shift from Gram-positive microbio such as Actinobacteria and Firmicutes, to Gram-negative Proteobacteria, many of which are antibiotic-resistant.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guevarra, R. B. et al. Metagenomic characterization of bacterial community and antibiotic resistance genes found in the mass transit system in Seoul, South Korea. Ecotoxicol. Environ. Saf. 246, 114176 (2022).

    CAS 
    PubMed 

    Google Scholar 

  • Leung, M. H. Y. et al. Characterization of the public transit air microbiome and resistome reveals geographical specificity. Microbiome 9, 112 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, K. et al. The environmental exposures and inner- and intercity traffic flows of the metropolitano system may contribute to the skin microbiome and resistome. Cell Rep. 24, 1190–1202.e5 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Danko, D. et al. A universal metagenomic map of urban microbiomes and antimicrobial resistance. Cell 184, 3376–3393.e17 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Singh, N. K., Wood, J. M., Karouia, F. & Venkateswaran, K. Succession and persistence of microbial communities and antimicrobial resistance genes associated with International Space Station environmental surfaces. Microbiome 6, 204 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klassert, T. E. et al. Bacterial colonization dynamics and antibiotic resistance gene dissemination in the hospital environment after first patient occupancy: a longitudinal metagenetic study. Microbiome 9, 169 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gupta, M., Lee, S., Bisesi, M. & Lee, J. Indoor microbiome and antibiotic resistance on floor surfaces: an exploratory study in three different building types. Int. J. Environ. Res. Public Health 16, 4160 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chng, K. R. et al. Cartography of opportunistic pathogens and antibiotic resistance genes in a tertiary hospital environment. Nat. Med. 26, 941–951 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, B. et al. The developing premature infant gut microbiome is a major divisor shaping the microbiome of neonatal intensive care unit rooms. Microbiome 6, 112 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Brooks, B. et al. Strain-resolved analysis of hospital rooms and infants reveals overlap between the human and room microbiome. Nat. Commun. 8, 1814 (2017). This study reports the application of strain tracking to demonstrate the transfer of microorganisms from the environment to human inhabitants.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, J., Shuai, W., Sumner, J. T., Moghadam, A. A. & Hartmann, E. M. Clinically relevant pathogens on surfaces display differences in survival and transcriptomic response in relation to probiotic and traditional cleaning strategies. npj Biofilms Microbiomes 8, 72 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Logan-Jackson, A. R. et al. A critical review on the factors that influence opportunistic premise plumbing pathogens: from building entry to fixtures in residences. Environ. Sci. Technol. 57, 6360–6372 (2023).

    CAS 
    PubMed 

    Google Scholar 

  • Mathews, C. L. et al. Crosslinked polyethylene (PEX) drinking water pipe: carbon leaching, impacts on microbial growth, and developmental toxicity to zebrafish. Environ. Adv. 13, 100386 (2023).

    CAS 

    Google Scholar 

  • Webster, T. M. et al. Structure and functional attributes of bacterial communities in premise plumbing across the United States. Environ. Sci. Technol. 55, 14105–14114 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Diorio-Toth, L. et al. Intensive care unit sinks are persistently colonized with multidrug resistant microbio and mobilizable, resistance-conferring plasmids. mSystems 8, e0020623 (2023).

    PubMed 

    Google Scholar 

  • Franco, L. C. et al. A microbiological survey of handwashing sinks in the hospital built environment reveals differences in patient room and healthcare personnel sinks. Sci. Rep. 10, 8234 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bosch, T. C. G. et al. The potential importance of the built-environment microbiome and its impact on human health. Proc. Natl Acad. Sci. USA 121, e2313971121 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fahimipour, A. K. et al. Daylight exposure modulates bacterial communities associated with household dust. Microbiome 6, 175 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lax, S. et al. Microbial and metabolic succession on common building materials under high humidity conditions. Nat. Commun. 10, 1767 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mhuireach, G. Á. et al. Differing effects of four building materials on viable bacterial communities and VOCs. Dev. Built Environ. 7, 100055 (2021).

    Google Scholar 

  • Hu, J. et al. Impacts of indoor surface finishes on bacterial viability. Indoor Air 29, 551–562 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Haines, S. R. et al. Microbial growth and volatile organic compound (VOC) emissions from carpet and drywall under elevated relative humidity conditions. Microbiome 9, 209 (2021). This study proposes a quantitative framework that links microbial metabolic activity to the availability of water, addressing the critical question of when indoor microbiota are viable or active.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hegarty, B., Haverinen-Shaughnessy, U., Shaughnessy, R. J. & Peccia, J. Spatial gradients of fungal abundance and ecology throughout a damp building. Environ. Sci. Technol. Lett. 6, 329–333 (2019).

    CAS 

    Google Scholar 

  • Ling, F., Whitaker, R., LeChevallier, M. W. & Liu, W.-T. Drinking water microbiome assembly induced by water stagnation. ISME J. 12, 1520–1531 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Angert, D. M. et al. Water quality during extended stagnation and flushing in a college residential vestíbulo. Environ. Sci. Water Res. Technol. https://doi.org/10.1039/D3EW00038A (2023).

  • Ley, C. J. et al. Drinking water microbiology in a water-efficient building: stagnation, seasonality, and physicochemical effects on opportunistic pathogen and total microbio proliferation. Environ. Sci. Water Res. Technol. 6, 2902–2913 (2020).

    CAS 

    Google Scholar 

  • Montagnino, E. et al. Over the weekend: water stagnation and contaminant exceedances in a green office building. PLOS Water 1, e0000006 (2022).

    Google Scholar 

  • Prussin, A. J. II et al. Viruses in the built environment (VIBE) meeting report. Microbiome 8, 1 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prussin, A. J. II et al. Seasonal dynamics of DNA and RNA vírico bioaerosol communities in a daycare center. Microbiome 7, 53 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Du, S. et al. Highly host-linked viromes in the built environment possess habitat-dependent diversity and functions for potential virus–host coevolution. Nat. Commun. 14, 2676 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mokili, J. L., Rohwer, F. & Dutilh, B. E. Metagenomics and future perspectives in virus discovery. Curr. Opin. Virol. 2, 63–77 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bahram, M., Anslan, S., Hildebrand, F., Bork, P. & Tedersoo, L. Newly designed 16S rRNA metabarcoding primers amplify diverse and novel archaeal taxa from the environment. Environ. Microbiol. Rep. 11, 487–494 (2019).

    PubMed 

    Google Scholar 

  • Hsu, T. et al. Urban transit system microbial communities differ by surface type and interaction with humans and the environment. mSystems 1, e00018-16 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pakpour, S. et al. Presence of Archaea in the indoor environment and their relationships with housing characteristics. Microb. Ecol. 72, 305–312 (2016). This study focuses on the presence of Archaea on indoor surfaces, complementing sequencing data with culture-based experiments.

    CAS 
    PubMed 

    Google Scholar 

  • Amin, H. et al. Indoor airborne microbiome and endotoxin: meteorological events and occupant characteristics are important determinants. Environ. Sci. Technol. 57, 11750–11766 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahnert, A., Haratani, M., Schmuck, M. & Berg, G. Enriching beneficial microbial diversity of indoor plants and their surrounding built environment with biostimulants. Front. Microbiol. 9, 2985 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Weiss, H. et al. The airplane cabin microbiome. Microb. Ecol. 77, 87–95 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Sun, Y. et al. Shotgun metagenomics of dust microbiome from flight deck and cabin in civil aviation aircraft. Indoor Air 30, 1199–1212 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Mahnert, A. et al. Microbiome dynamics during the HI-SEAS IV mission, and implications for future crewed missions beyond Earth. Microbiome 9, 27 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Avila-Herrera, A. et al. Crewmember microbiome may influence microbial composition of ISS habitable surfaces. PLoS ONE 15, e0231838 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Checinska Sielaff, A. et al. Characterization of the total and viable bacterial and fungal communities associated with the International Space Station surfaces. Microbiome 7, 50 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Klimenko, N. S. et al. Co-occurrence patterns of microbio within microbiome of Moscow subway. Comput. Struct. Biotechnol. J. 18, 314–322 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gohli, J. et al. The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities. Microbiome 7, 160 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hernández, A. M., Vargas-Robles, D., Alcaraz, L. D. & Peimbert, M. Station and train surface microbiomes of Mexico City’s metropolitano (subway/underground). Sci. Rep. 10, 8798 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X. et al. Continental-scale microbiome study reveals different environmental characteristics determining microbial richness, composition, and quantity in hotel rooms. mSystems 5, e00119–e00120 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nygaard, A. B. & Charnock, C. Longitudinal development of the dust microbiome in a newly opened Norwegian jardín de infancia. Microbiome 6, 159 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Richardson, M., Gottel, N., Gilbert, J. A. & Lax, S. Microbial similarity between students in a common dormitory environment reveals the forensic potential of individual microbial signatures. mBio 10, e01054–e01119 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A. et al. Longitudinal homogenization of the microbiome between both occupants and the built environment in a cohort of United States air force cadets. Microbiome 7, 70 (2019). This study is a rare example of an indoor microbiome study involving a highly behaviourally homogenous participant cohort and a reproducible building design.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, M. D. et al. Reference-guided metagenomics reveals genome-level evidence of potential microbial transmission from the ISS environment to an astronaut’s microbiome. iScience 24, 102114 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sharma, A. & Gilbert, J. A. Microbial exposure and human health. Curr. Opin. Microbiol. 44, 79–87 (2018).

    PubMed 

    Google Scholar 

  • Hoare, E., Jacka, F. & Berk, M. The impact of urbanization on mood disorders: an update of recent evidence. Curr. Opin. Psychiatry 32, 198–203 (2019).

    PubMed 

    Google Scholar 

  • Kaplan, R. C. et al. Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity. Genome Biol. 20, 219 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fakunle, A. G., Jafta, N., Okekunle, A. P. & Naidoo, R. N. Indoor microbiome and risk of lower respiratory tract infections among children under-five years: a meta-analysis. Indoor Air 30, 795–804 (2020). This study presents a meta-analysis to demonstrate that exposure to high indoor microbial concentration increases the risk of lower respiratory tract infections.

    CAS 
    PubMed 

    Google Scholar 

  • Richardson, M. et al. Concurrent measurement of microbiome and allergens in the air of bedrooms of allergy disease patients in the Chicago area. Microbiome 7, 82 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pearson, A. L. et al. Associations detected between measures of neighborhood environmental conditions and human microbiome diversity. Sci. Total Environ. 745, 141029 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Arnold, W. A. et al. Quaternary ammonium compounds: a chemical class of emerging concern. Environ. Sci. Technol. 57, 7645–7665 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X. et al. Associations between respiratory infections and bacterial microbiome in student dormitories in Northern China. Indoor Air 30, 816–826 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Marotz, C. et al. SARS-CoV-2 detection status associates with bacterial community composition in patients and the hospital environment. Microbiome 9, 132 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minich, J. J. et al. Feasibility of using alternative swabs and storage solutions for paired SARS-CoV-2 detection and microbiome analysis in the hospital environment. Microbiome 9, 25 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weber, D. J., Anderson, D. & Rutala, W. A. The role of the surface environment in healthcare-associated infections. Curr. Opin. Infect. Dis. 26, 338–344 (2013).

    PubMed 

    Google Scholar 

  • Alverdy, J. C., Hyman, N. & Gilbert, J. Re-examining causes of surgical site infections following elective surgery in the era of asepsis. Lancet Infect. Dis. 20, e38–e43 (2020). This perspective highlights extensive new data suggesting that the occurrence of infectious disease in human subjects indoors is more likely owing to opportunistic pathobionts already present in a person’s microbiome rather than acquisition from fomite.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gilbert, J. A. & Alverdy, J. Where do the pathogens that cause surgical site infections come from? Sci. Transl. Med. 16, eado1449 (2024).

    PubMed 

    Google Scholar 

  • Johnson, C. R. et al. Nano-enabled, antimicrobial toothbrushes — how physical and chemical properties relate to antibacterial capabilities. J. Hazard. Mater. 396, 122445 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Kelley, S. T. et al. Altered microbiomes in thirdhand smoke-exposed children and their home environments. Pediatr. Res. 90, 1153–1160 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X. et al. Association between indoor microbiome exposure and sick building syndrome (SBS) in junior high schools of Johor Bahru, Malaysia. Sci. Total Environ. 753, 141904 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Indoor Air Quality Research. Report on a WHO meeting. Stockholm, 27–31 August 1984. EURO Rep. Stud. 1–64 (1986).

  • Ha, C. W. Y. et al. Translocation of viable gut microbiota to mesenteric adipose drives formation of creeping fat in humans. Cell 183, 666–683.e17 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed 

    Google Scholar 

  • Scepanovic, P. et al. A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals. Microbiome 7, 130 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fyfe-Johnson, A. L. et al. Nature contact and children’s health: a systematic review. In Council on Community Pediatrics Program. https://doi.org/10.1542/peds.147.3_meetingabstract.50 (American Academy of Pediatrics, 2021).

  • Haahtela, T. Clinical application of the biodiversity hypothesis in the management of allergic disorders. in: Evolution, Biodiversity and a Reassessment of the Hygiene Hypothesis 393–414 (Springer International Publishing, 2022).

  • Lowry, C. A. et al. The microbiota, immunoregulation, and mental health: implications for public health. Curr. Environ. Health Rep. 3, 270–286 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diaz Heijtz, R. et al. Frecuente gut microbiota modulates brain development and behavior. Proc. Natl Acad. Sci. USA 108, 3047–3052 (2011).

    PubMed 

    Google Scholar 

  • Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Foster, J. A., Rinaman, L. & Cryan, J. F. Stress & the gut–brain axis: regulation by the microbiome. Neurobiol. Stress 7, 124–136 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deckers, J., Marsland, B. J. & von Mutius, E. Protection against allergies: microbes, immunity, and the farming effect. Eur. J. Immunol. 51, 2387–2398 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Kirjavainen, P. V. et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 25, 1089–1095 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • von Mutius, E. Allergies, infections and the hygiene hypothesis — the epidemiological evidence. Immunobiology 212, 433–439 (2007).

    Google Scholar 

  • Sun, Y. et al. Indoor metabolites and chemicals outperform microbiome in classifying childhood asthma and allergic rhinitis. Eco-Environ. Health 2, 208–218 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, X. et al. Associations between species-level indoor microbiome, environmental characteristics, and asthma in junior high schools of Terengganu, Malaysia. Air Qual. Atmos. Health 15, 1043–1055 (2022).

    CAS 

    Google Scholar 

  • Fu, X. et al. Indoor microbiome, environmental characteristics and asthma among junior high school students in Johor Bahru, Malaysia. Environ. Int. 138, 105664 (2020).

    PubMed 

    Google Scholar 

  • Sun, Y. et al. Indoor microbiome, microbial and plant metabolites, chemical compounds, and asthma symptoms in junior high school students: a multicentre association study in Malaysia. Eur. Respir. J. 60, 2200260 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karvonen, A. M. et al. Indoor bacterial microbiota and development of asthma by 10.5 years of age. J. Allergy Clin. Immunol. 144, 1402–1410 (2019). This paper shows an inverse correlation between bacterial diversity and the development of asthma by age 10, revealing that the proportion of Lactococcus spp. is a significant risk divisor for asthma onset, whereas the proportion of Actinomycetales is associated with lower asthma risk.

    CAS 
    PubMed 

    Google Scholar 

  • Lynch, S. V. et al. Effects of early-life exposure to allergens and microbio on recurrent wheeze and atopy in urban children. J. Allergy Clin. Immunol. 134, 593–601.e12 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • von Mutius, E. & Vercelli, D. Farm living: effects on childhood asthma and allergy. Nat. Rev. Immunol. 10, 861–868 (2010).

    Google Scholar 

  • Huang, Y. J. & Boushey, H. A. The microbiome in asthma. J. Allergy Clin. Immunol. 135, 25–30 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meggs, W. J. Epidemics of mold poisoning past and present. Toxicol. Ind. Health 25, 571–576 (2009).

    PubMed 

    Google Scholar 

  • Fisk, W. J., Eliseeva, E. A. & Mendell, M. J. Association of residential dampness and mold with respiratory tract infections and bronchitis: a meta-analysis. Environ. Health 9, 72 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chowdhary, A., Agarwal, K. & Meis, J. F. Filamentous fungi in respiratory infections. What lies beyond aspergillosis and mucormycosis? PLoS Pathog. 12, e1005491 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hedayati, M. T., Pasqualotto, A. C., Warn, P. A., Bowyer, P. & Denning, D. W. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153, 1677–1692 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Barbeau, D. N., Grimsley, L. F., White, L. E., El-Dahr, J. M. & Lichtveld, M. Mold exposure and health effects following Hurricanes Katrina and Rita. Annu. Rev. Public Health 31, 165–178 (2010).

    PubMed 

    Google Scholar 

  • Zaramela, L. S., Tjuanta, M., Moyne, O., Neal, M. & Zengler, K. SynDNA — a synthetic DNA spike-in method for absolute quantification of shotgun metagenomic sequencing. mSystems 7, e0044722 (2022).

    PubMed 

    Google Scholar 

  • Shen, J. et al. An improved workflow for accurate and robust healthcare environmental surveillance using metagenomics. Microbiome 10, 206 (2022). This paper discusses the technical issues associated with sequencing-based surveillance of microbial communities on indoor surfaces and provides tools and protocols to address these challenges.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minich, J. J. et al. KatharoSeq enables high-throughput microbiome analysis from low-biomass samples. mSystems 3, e00218–e00317 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jackson, R. J., Dannenberg, A. L. & Frumkin, H. Health and the built environment: 10 years after. Am. J. Public Health 103, 1542–1544 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Frumkin, H. et al. Nature contact and human health: a research memorándum. Environ. Health Perspect. 125, 075001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wells, N. M. & Evans, G. W. Nearby nature: a buffer of life stress among rural children. Environ. Behav. 35, 311–330 (2003).

    Google Scholar 

  • Balseviciene, B. et al. Impact of residential greenness on preschool children’s emotional and behavioral problems. Int. J. Environ. Res. Public Health 11, 6757–6770 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fjørtoft, I. The natural environment as a playground for children: the impact of outdoor play activities in pre-primary school children. Early Child. Educ. J. 29, 111–117 (2001).

    Google Scholar 

  • Copeland, K. A., Khoury, J. C. & Kalkwarf, H. J. Child care center characteristics associated with preschoolers’ physical activity. Am. J. Prev. Med. 50, 470–479 (2016).

    PubMed 

    Google Scholar 

  • Kim, J.-H., Lee, C. & Sohn, W. Urban natural environments, obesity, and health-related quality of life among Hispanic children living in inner-city neighborhoods. Int. J. Environ. Res. Public Health 13, 121 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, J. F., Wilson, J. S. & Liu, G. C. Neighborhood greenness and 2-year changes in body mass index of children and youth. Am. J. Prev. Med. 35, 547–553 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dadvand, P. et al. Risks and benefits of green spaces for children: a cross-sectional study of associations with sedentary behavior, obesity, asthma, and allergy. Environ. Health Perspect. 122, 1329–1335 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lovasi, G. S. et al. Neighborhood safety and green space as predictors of obesity among preschool children from low-income families in New York City. Prev. Med. 57, 189–193 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gordon, J. et al. A simple novel device for air sampling by electrokinetic capture. Microbiome 3, 79 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mills, J. G. et al. Revegetation of urban green space rewilds soil microbiotas with implications for human health and urban design. Restor. Ecol. https://doi.org/10.1111/rec.13175 (2020).

  • Beckett, R. Probiotic design. J. Archit. 26, 6–31 (2021).

    Google Scholar 

  • González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020).

    PubMed 

    Google Scholar 

  • Berg, N. W. et al. Safety assessment of the use of Bacillus-based cleaning products. Food Chem. Toxicol. 116, 42–52 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Spök, A., Arvanitakis, G. & McClung, G. Status of microbial based cleaning products in statutory regulations and ecolabelling in Europe, the USA, and Canada. Food Chem. Toxicol. 116, 10–19 (2018).

    PubMed 

    Google Scholar 

  • Neu, L. & Hammes, F. Feeding the building plumbing microbiome: the importance of synthetic polymeric materials for biofilm formation and management. Water 12, 1774 (2020).

    Google Scholar 

  • Nodehi, M., Ozbakkaloglu, T. & Gholampour, A. A systematic review of bacteria-based self-healing concrete: biomineralization, mechanical, and durability properties. J. Build. Eng. 49, 104038 (2022).

    Google Scholar 

  • Birch, E., Bridgens, B., Zhang, M. & Dade-Robertson, M. Bacterial spore-based hygromorphs: a novel active material with potential for architectural applications. Sustain. Sci. Pract. Policy 13, 4030 (2021).

    CAS 

    Google Scholar 

  • Ramos, T., Dedesko, S., Siegel, J. A., Gilbert, J. A. & Stephens, B. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building. PLoS ONE 10, e0118207 (2015). This study demonstrates the potential of integrating genetically modified microorganisms into 3D printed materials, paving the way for novel interventions in the indoor environment to reduce infectious disease risk and improve immune health.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Stephens, B. et al. Microbial exchange via fomites and implications for human health. Curr. Pollut. Rep. 5, 198–213 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gomez-Silvan, C. et al. A comparison of methods used to unveil the genetic and metabolic pool in the built environment. Microbiome 6, 71 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sui, H.-Y. et al. Impact of DNA extraction method on variation in human and built environment microbial community and functional profiles assessed by shotgun metagenomics sequencing. Front. Microbiol. 11, 953 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prior, J. P. et al. Filter forensics: microbiota recovery from residential HVAC filters. Microbiome 6, 22 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hampton-Marcell, J. T., Ghosh, A., Gukeh, M. J. & Megaridis, C. M. A new approach of microbiome monitoring in the built environment: feasibility analysis of condensation capture. Microbiome 11, 129 (2023).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kapono, C. A. et al. Creating a 3D microbial and chemical snapshot of a human habitat. Sci. Rep. 8, 3669 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zolfo, M. et al. Profiling microbial strains in urban environments using metagenomic sequencing data. Biol. Direct 13, 9 (2018).

    PubMed 
    PubMed Central 

    Google Scholar