Cognitive training and promoting a healthy lifestyle for individuals with isolated REM sleep behavior disorder: study protocol of the delayed-start randomized controlled trial CogTrAiL-RBD | Trials

  • Jeppesen J, Otto M, Frederiksen Y, Hansen AK, Fedorova TD, Knudsen K, et al. Observations on muscle activity in REM sleep behavior disorder assessed with a semi-automated scoring algorithm. Clin Neurophysiol. 2018;129(3):541–7.

    Article 
    PubMed 

    Google Scholar 

  • Iranzo A, Santamaria J, Tolosa E. Idiopathic rapid eye movement sleep behaviour disorder: diagnosis, management, and the need for neuroprotective interventions. Lancet Neurol. 2016;15(4):405–19.

    Article 
    PubMed 

    Google Scholar 

  • Iranzo A, Fairfoul G, Ayudhaya ACN, Serradell M, Gelpi E, Vilaseca I, et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol. 2021;20(3):203–12.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schaffrath A, Schleyken S, Seger A, Jergas H, Özdüzenciler P, Pils M, et al. Patients with isolated REM-sleep behavior disorder have elevated levels of alpha-synuclein aggregates in stool. NPJ Parkinson’s Dis. 2023;9(1):14.

    CAS 

    Google Scholar 

  • Kuzkina A, Panzer C, Seger A, Schmitt D, Rößle J, Schreglmann SR, et al. Dermal real-time quaking-induced conversion is a sensitive marker to confirm isolated rapid eye movement sleep behavior disorder as an early α-synucleinopathy. Mov Disord. 2023;38:1077–82. https://doi.org/10.1002/mds.29340.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Berg D, Postuma RB, Adler CH, Bloem BR, Chan P, Dubois B, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2015;30(12):1600–11.

    Article 
    PubMed 

    Google Scholar 

  • Heinzel S, Berg D, Gasser T, Chen H, Yao C, Postuma RB, et al. Update of the MDS research criteria for prodromal Parkinson’s disease. Mov Disord. 2019;34(10):1464–70.

    Article 
    PubMed 

    Google Scholar 

  • McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94(17):743–55.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wenning GK, Stankovic I, Vignatelli L, Fanciulli A, Calandra-Buonaura G, Seppi K, et al. The movement disorder society criteria for the diagnosis of multiple system atrophy. Mov Disord. 2022;37(6):1131–48.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Postuma RB, Iranzo A, Hu M, Högl B, Boeve BF, Manni R, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142(3):744–59.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Joza S, Hu MT, Jung K-Y, Kunz D, Stefani A, Dušek P, et al. Progression of clinical markers in prodromal Parkinson’s disease and dementia with Lewy bodies: a multicentre study. Brain. 2023;146(8):3258–72.

    Article 
    PubMed 

    Google Scholar 

  • Liepelt-Scarfone I, Ophey A, Kalbe E. Cognition in prodromal Parkinson’s disease. Cognition in Parkinson’s disease. 2022;269:93.

    Article 

    Google Scholar 

  • Fengler S, Liepelt-Scarfone I, Brockmann K, Schäffer E, Berg D, Kalbe E. Cognitive changes in prodromal Parkinson’s disease: a review. Mov Disord. 2017;32(12):1655–66.

    Article 
    PubMed 

    Google Scholar 

  • Ferini-Strambi L, Fasiello E, Sforza M, Salsone M, Galbiati A. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev Neurother. 2019;19(11):1069–87.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Leitner C, D’Este G, Cipote L, et al. Neuropsychological changes in isolated REM sleep behavior disorder: a systematic review and meta-analysis of cross-sectional and longitudinal studies. Neuropsychol Rev. 2024;34:41–66. https://doi.org/10.1007/s11065-022-09572-1.

    Article 
    PubMed 

    Google Scholar 

  • Berg D, Borghammer P, Fereshtehnejad S-M, Heinzel S, Horsager J, Schaeffer E, et al. Prodromal Parkinson disease subtypes—key to understanding heterogeneity. Nat Rev Neurol. 2021;17(6):349–61.

    Article 
    PubMed 

    Google Scholar 

  • Jozwiak N, Postuma RB, Montplaisir J, Latreille V, Panisset M, Chouinard S, et al. REM sleep behavior disorder and cognitive impairment in Parkinson’s disease. Sleep. 2017;40(8):zsx101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fereshtehnejad S-M, Romenets SR, Anang JB, Latreille V, Gagnon J-F, Postuma RB. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol. 2015;72(8):863–73.

    Article 
    PubMed 

    Google Scholar 

  • Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 2021;7(1):1–21.

    Google Scholar 

  • Vossius C, Larsen JP, Janvin C, Aarsland D. The economic impact of cognitive impairment in Parkinson’s disease. Mov Disord. 2011;26(8):1541–4.

    Article 
    PubMed 

    Google Scholar 

  • Mosley PE, Moodie R, Dissanayaka N. Caregiver burden in Parkinson disease: a critical review of recent literature. J Geriatr Psychiatry Neurol. 2017;30(5):235–52.

    Article 
    PubMed 

    Google Scholar 

  • Rahayel S, Gaubert M, Postuma RB, Montplaisir J, Carrier J, Monchi O, et al. Brain atrophy in Parkinson’s disease with polysomnography-confirmed REM sleep behavior disorder. Sleep. 2019;42(6):zsz062.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen M, Li Y, Chen J, Gao L, Sun J, Gu Z, et al. Structural and functional brain alterations in patients with idiopathic rapid eye movement sleep behavior disorder. J Neuroradiol. 2022;49(1):66–72.

    Article 
    PubMed 

    Google Scholar 

  • Campabadal A, Segura B, Junque C, Iranzo A. Structural and functional magnetic resonance imaging in isolated REM sleep behavior disorder: a systematic review of studies using neuroimaging software. Sleep Med Rev. 2021;59:101495.

    Article 
    PubMed 

    Google Scholar 

  • Rahayel S, Postuma RB, Montplaisir J, Marchand DG, Escudier F, Gaubert M, et al. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology. 2018;90(20):e1759–70.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weil RS, Morris HR. REM sleep behaviour disorder: an early window for prevention in neurodegeneration? Brain. 2019;142(3):498–501.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Postuma RB, Berg D. Prodromal Parkinson’s disease: the decade past, the decade to come. Mov Disord. 2019;34(5):665–75.

    Article 
    PubMed 

    Google Scholar 

  • Dommershuijsen LJ, Darweesh SKL, Luik AI, Kieboom BCT, Koudstaal PJ, Boon AJW, et al. Ethical considerations in screening for rapid eye movement sleep behavior disorder in the genérico population. Mov Disord. 2020;35:1939–44. https://doi.org/10.1002/mds.28262.

    Article 
    PubMed 

    Google Scholar 

  • Gossard TR, Teigen LN, Yoo S, Timm PC, Jagielski J, Bibi N, et al. Patient values and preferences regarding prognostic counseling in isolated REM sleep behavior disorder. Sleep. 2023;46(1):zsac244.

    Article 
    PubMed 

    Google Scholar 

  • Ngandu T, Lehtisalo J, Solomon A, Levälahti E, Ahtiluoto S, Antikainen R, et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring frente a control to prevent cognitive decline in at-risk elderly people (FINGER): a randomised controlled trial. The Lancet. 2015;385(9984):2255–63.

    Article 

    Google Scholar 

  • Vellas B, Carrie I, Gillette-Guyonnet S, Touchon J, Dantoine T, Dartigues J, et al. MAPT study: a multidomain approach for preventing Alzheimer’s disease: design and baseline data. The J Prev Alzheimer’s Dis. 2014;1(1):13–22.

    CAS 

    Google Scholar 

  • Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol. 2018;14(11):653–66.

    Article 
    PubMed 

    Google Scholar 

  • Rebok GW, Ball K, Guey LT, Jones RN, Kim HY, King JW, et al. Ten-year effects of the advanced cognitive training for independent and esencial elderly cognitive training trial on cognition and everyday functioning in older adults. J Am Geriatr Soc. 2014;62(1):16–24.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gavelin HM, Lampit A, Hallock H, Sabates J, Bahar-Fuchs A. Cognition-oriented treatments for older adults: a systematic overview of systematic reviews. Neuropsychol Rev. 2020;30:167–93.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leung IH, Walton CC, Hallock H, Lewis SJ, Valenzuela M, Lampit A. Cognitive training in Parkinson disease: a systematic review and meta-analysis. Neurology. 2015;85(21):1843–51.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lawrence BJ, Gasson N, Bucks RS, Troeung L, Loftus AM. Cognitive training and noninvasive brain stimulation for cognition in Parkinson’s disease: a meta-analysis. Neurorehabil Neural Repair. 2017;31(7):597–608.

    Article 
    PubMed 

    Google Scholar 

  • Gavelin HM, Domellöf ME, Leung I, Neely AS, Launder NH, Nategh L, et al. Computerized cognitive training in Parkinson’s disease: a systematic review and meta-analysis. Ageing Res Rev. 2022;80:101671. https://doi.org/10.1016/j.arr.2022.101671.

  • Duda BM, Sweet LH. Functional brain changes associated with cognitive training in healthy older adults: a preliminary ALE meta-analysis. Brain Imaging Behav. 2019;14:1247–62.

    Article 

    Google Scholar 

  • van Balkom TD, van den Heuvel OA, Berendse HW, van der Werf YD, Vriend C. The effects of cognitive training on brain network activity and connectivity in aging and neurodegenerative diseases: a systematic review. Neuropsychol Rev. 2020;30(1):267–86.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ophey A, Rehberg S, Giehl K, Eggers C, Reker P, van Eimeren T, et al. Predicting working memory training responsiveness in Parkinson’s disease: both “system hardware” and room for improvement are needed. Neurorehabil Neural Repair. 2021;35(2):117–30.

    Article 
    PubMed 

    Google Scholar 

  • Hingorani AD, van der Windt DA, Riley RD, Abrams K, Moons KG, Steyerberg EW, et al. Prognosis research strategy (PROGRESS) 4: stratified medicine research. BMJ. 2013;346:1–9.

    Article 

    Google Scholar 

  • Ophey A, Roheger M, Folkerts A-K, Skoetz N, Kalbe E. A systematic review on predictors of working memory training responsiveness in healthy older adults: methodological challenges and future directions. Front Aging Neurosci. 2020;12:1–23.

    Article 

    Google Scholar 

  • Roheger M, Folkerts AK, Krohm F, et al. Prognostic factors for change in memory test performance after memory training in healthy older adults: a systematic review and outline of statistical challenges. Diagn Progn Res. 2020;4:7. https://doi.org/10.1186/s41512-020-0071-8.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sommerauer M, Fedorova TD, Hansen AK, Knudsen K, Otto M, Jeppesen J, et al. Evaluation of the noradrenergic system in Parkinson’s disease: an 11C-MeNER PET and neuromelanin MRI study. Brain. 2018;141(2):496–504.

    Article 
    PubMed 

    Google Scholar 

  • Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 2018;17(7):618–28.

    Article 
    PubMed 

    Google Scholar 

  • Nguyen L, Murphy K, Andrews G. Cognitive and neural plasticity in old age: a systematic review of evidence from executive functions cognitive training. Ageing Res Rev. 2019;53:1–17.

    Article 

    Google Scholar 

  • Díez-Cirarda M, Ojeda N, Peña J, Cabrera-Zubizarreta A, Lucas-Jiménez O, Gómez-Esteban JC, et al. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson’s disease: a randomized controlled trial. Brain Imaging Behav. 2017;11(6):1640–51.

    Article 
    PubMed 

    Google Scholar 

  • Vriend C, van Balkom TD, Berendse HW, van der Werf YD, van den Heuvel OA. Cognitive training in Parkinson’s disease induces particular, not completo, changes in white matter microstructure. Neurotherapeutics. 2021;18(4):2518–28.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Musiek ES, Holtzman DM. Mechanisms linking circadian clocks, sleep, and neurodegeneration. Science. 2016;354(6315):1004–8.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doppler CE, Smit JA, Hommelsen M, Seger A, Horsager J, Kinnerup MB, et al. Microsleep disturbances are associated with noradrenergic dysfunction in Parkinson’s disease. Sleep. 2021;44(8):zsab040.

    Article 
    PubMed 

    Google Scholar 

  • Sommerauer M, Valko PO, Werth E, Poryazova R, Hauser S, Baumann CR. Revisiting the impact of REM sleep behavior disorder on motor progression in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(4):460–2.

    Article 
    PubMed 

    Google Scholar 

  • Schreiner SJ, Imbach LL, Valko PO, Maric A, Maqkaj R, Werth E, et al. Reduced regional NREM sleep slow-wave activity is associated with cognitive impairment in Parkinson disease. Front Neurol. 2021;12:618101.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Seger A, Ophey A, Heitzmann W, Doppler CE, Lindner MS, Brune C, et al. Evaluation of a structured screening assessment to detect isolated rapid eye movement sleep behavior disorder. Mov Disord. 2023;38(6):990–9. https://doi.org/10.1002/mds.29389.

    Article 
    PubMed 

    Google Scholar 

  • D’Agostino RB Sr. The delayed-start study design. N Engl J Med. 2009;361(13):1304–6.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–9.

    Article 
    PubMed 

    Google Scholar 

  • Faul F, Erdfelder E, Lang A-G, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–91.

    Article 
    PubMed 

    Google Scholar 

  • Chiu H-L, Chu H, Tsai J-C, Liu D, Chen Y-R, Yang H-L, et al. The effect of cognitive-based training for the healthy older people: a meta-analysis of randomized controlled trials. PLoS ONE. 2017;12(5):e0176742.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Borm GF, Fransen J, Lemmens WA. A simple sample size formula for analysis of covariance in randomized clinical trials. J Clin Epidemiol. 2007;60(12):1234–8.

    Article 
    PubMed 

    Google Scholar 

  • Calamia M, Markon K, Tranel D. The robust reliability of neuropsychological measures: meta-analyses of test–retest correlations. Clin Neuropsychol. 2013;27(7):1077–105.

    Article 
    PubMed 

    Google Scholar 

  • Ophey A, Giehl K, Rehberg S, Eggers C, Reker P, van Eimeren T, et al. Effects of working memory training in patients with Parkinson’s disease without cognitive impairment: a randomized controlled trial. Parkinsonism Relat Disord. 2020;72:13–22.

    Article 
    PubMed 

    Google Scholar 

  • Meinders MJ, Marks WJ, van Zundert SB, Kapur R, Bloem BR. Enhancing participant engagement in clinical studies: strategies applied in the personalized Parkinson project. Journal of Parkinson’s Disease. 2023;13(4):637–40.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jahn T, Beitlich D, Hepp S, Knecht R, Köhler K, Ortner C, et al. Drei Sozialformeln zur Schätzung der (prämorbiden) Intelligenzquotienten nach Wechsler. Zeitschrift für Neuropsychologie. 2013. https://doi.org/10.1024/1016-264X/a000084.

  • Jin M, Polis A, Hartzel J. Algorithms for minimization randomization and the implementation with an R package. Commun Stat Simul Comput. 2021;50(10):3077–87.

    Article 

    Google Scholar 

  • Petrelli A, Kaesberg S, Barbe M, Timmermann L, Rosen J, Fink G, et al. Cognitive training in Parkinson’s disease reduces cognitive decline in the long term. Eur J Neurol. 2015;22(4):640–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petrelli A, Kaesberg S, Barbe MT, Timmermann L, Fink GR, Kessler J, et al. Effects of cognitive training in Parkinson’s disease: a randomized controlled trial. Parkinsonism Relat Disord. 2014;20(11):1196–202.

    Article 
    PubMed 

    Google Scholar 

  • Rahe J, Becker J, Fink GR, Kessler J, Kukolja J, Rahn A, et al. Cognitive training with and without additional physical activity in healthy older adults: cognitive effects, neurobiological mechanisms, and prediction of training success. Front Aging Neurosci. 2015;7:187.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalbe E, Roheger M, Paluszak K, Meyer J, Becker J, Fink GR, et al. Effects of a cognitive training with and without additional physical activity in healthy older adults: a follow-up 1 year after a randomized controlled trial. Front Aging Neurosci. 2018;10:407.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kalbe E, Folkerts A-K, Ophey A, Eggers C, Elben S, Dimenshteyn K, et al. Enhancement of executive functions but not memory by multidomain group cognitive training in patients with Parkinson’s disease and mild cognitive impairment: a multicenter randomized controlled trial. Parkinson’s Disease. 2020;2020:1–15.

    Article 

    Google Scholar 

  • Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

    Article 
    PubMed 

    Google Scholar 

  • Lee PH, Macfarlane DJ, Lam TH, Stewart SM. Validity of the international physical activity questionnaire short form (IPAQ-SF): a systematic review. Int J Behav Nutr Phys Act. 2011;8(1):1–11.

    Article 

    Google Scholar 

  • Carlson MC, Parisi JM, Xia J, Xue Q-L, Rebok GW, Bandeen-Roche K, et al. Lifestyle activities and memory: variety may be the spice of life The Women’s Health and Aging Study II. J Int Neuropsychol Soc. 2011;18(2):286.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Parisi JM, Rebok GW, Xue Q-L, Fried LP, Seeman TE, Tanner EK, et al. The role of education and intellectual activity on cognition. J Aging Res. 2012;2012:416132.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schröder H, Fitó M, Estruch R, Martínez-González MA, Corella D, Salas-Salvadó J, et al. A short screener is valid for assessing Mediterranean diet adherence among older Spanish men and women. J Nutr. 2011;141(6):1140–5.

    Article 
    PubMed 

    Google Scholar 

  • Hebestreit K, Yahiaoui-Doktor M, Engel C, Vetter W, Siniatchkin M, Erickson N, et al. Validation of the German version of the Mediterranean Diet Adherence Screener (MEDAS) questionnaire. BMC Cancer. 2017;17(1):1–10.

    Article 

    Google Scholar 

  • Valenzuela MJ, Sachdev P. Assessment of complex mental activity across the lifespan: development of the Lifetime of Experiences Questionnaire (LEQ). Psychol Med. 2007;37(7):1015–25.

    Article 
    PubMed 

    Google Scholar 

  • Roeske S, Wolfsgruber S, Kleineidam L, Zulka L, Buerger K, Ewers M, et al. P3–591: a German version of the Lifetime of Experiences Questionnaire (LEQ) to measure cognitive reserve: validation results from the DELCODE study. Alzheimer’s Dementia. 2018;14((7S_Part_25)):P1352–3.

    Google Scholar 

  • Baron-Cohen S, Jolliffe T, Mortimore C, Robertson M. Another advanced test of theory of mind: evidence from very high functioning adults with autism or Asperger syndrome. J Child Psychol Psychiatry. 1997;38(7):813–22.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kynast J, Polyakova M, Quinque EM, Hinz A, Villringer A, Schroeter ML. Age-and sex-specific standard scores for the Reading the Mind in the Eyes Test. Front Aging Neurosci. 2021;12:607107.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aschenbrenner S, Tucha O, Lange K. Regensburger Wortflüssigkeitstest Hogrefe Göttingen. Göttingen, Germany: Hogrefe; 2000.

    Google Scholar 

  • Reitan R. Trail Making Test: manual for administration and scoring. Tucson, Arizona: Reitan Neuropsychology Laboratory; 1992.

    Google Scholar 

  • Aebi C. Validierung der neuropsychologischen Testbatterie CERAD-NP: eine Multi-Center Studie [Dissertation]. Basel: University of Basel; 2002.

    Google Scholar 

  • Bäumler G, Stroop J. Farbe-Wort-Interferenztest nach JR Stroop (FWIT). Hogrefe, Verlag für Psychologie; 1985.

    Google Scholar 

  • Sturm W, Willmes K, Horn W. Leistungsprüfsystem für 50–90jährige. Handanweisung. Göttingen: Hogrefe; 1993.

    Google Scholar 

  • Rey A. L’examen psychologique dans les cas d’encéphalopathie traumatique: (Les problèmes). Librairie Naville & Cie; 1941.

  • Strauss E, Sherman EM, Spreen O. A compendium of neuropsychological tests: administration, norms, and commentary. American Chemical Society; 2006.

    Google Scholar 

  • Benton A, Hannay HJ, Varney NR. Visual perception of line direction in patients with parcial brain disease. Neurology. 1975;25(10):907.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Benton AL. Contributions to neuropsychological assessment: a clinical manual. USA: Oxford University Press; 1994.

    Google Scholar 

  • Wechsler D. WMS-R: Wechsler memory scale-revised: manual. Psychological Corporation; 1984.

    Google Scholar 

  • Schretlen D, Bobholz JH, Brandt J. Development and psychometric properties of the Brief Test of Attention. Clin Neuropsychol. 1996;10(1):80–9.

    Article 

    Google Scholar 

  • Helmstaedter C, Durwen HF. VLMT: Verbaler Lern-und Merkfähigkeitstest: Ein praktikables und differenziertes Instrumentarium zur Prüfung der verbalen Gedächtnisleistungen. Schweizer Archiv für Neurologie, Neurochirurgie und Psychiatrie. 1990.

  • Kalbe E, Reinhold N, Brand M, Kessler J. Aphasie-Check-Liste (ACL): Protokollheft, Testheft, Lösungsfolien, Vorlagen, Manual. Köln: ProLog, Therapie-und Lernmittel; 2002.

    Google Scholar 

  • Wechsler D. Die Messung der Intelligenz Erwachsener. Textband zum Hamburg-Wechsler-Intelligenztest für Erwachsene (HAWIE); Deutsche Bearbeitung Anne von Hardesty, und Hans Lauber; 1956.

  • Beck AT, Steer RA, Brown GK. Beck depression inventory-II. San Antonio. 1996;78(2):490–8.

    Google Scholar 

  • Penner I-K, Raselli C, Stöcklin M, Opwis K, Kappos L, Calabrese P. The Fatigue Scale for Motor and Cognitive Functions (FSMC): validation of a new instrument to assess multiple sclerosis-related fatigue. Mult Scler J. 2009;15(12):1509–17.

    Article 
    CAS 

    Google Scholar 

  • Ware JE, Kosinski M, Bayliss MS, McHorney CA, Rogers WH, Raczek A. Comparison of methods for the scoring and statistical analysis of SF-36 health profile and summary measures: summary of results from the Medical Outcomes Study. Med Care. 1995;33:AS264–79.

    PubMed 

    Google Scholar 

  • Bullinger M. German translation and psychometric testing of the SF-36 health survey: preliminary results from the IQOLA project. Soc Sci Med. 1995;41(10):1359–66.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Levenstein S, Prantera C, Varvo V, Scribano ML, Berto E, Luzi C, et al. Development of the perceived stress questionnaire: a new tool for psychosomatic research. J Psychosom Res. 1993;37(1):19–32.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fliege H, Rose M, Arck P, Levenstein S, Klapp BF. Validierung des “perceived stress questionnaire” (PSQ) an einer deutschen Stichprobe. [Validation of the “Perceived Stress Questionnaire” (PSQ) in a German sample.]. Diagnostica. 2001;47(3):142–52.

    Article 

    Google Scholar 

  • Jerusalem M, Schwarzer R. Skala zur allgemeinen Selbstwirksamkeitserwartung. Skalen zur Erfassung von Lehrer-und Schülermerkmalen Dokumentation der psychometrischen Verfahren im Rahmen der Wissenschaftlichen Begleitung des Modellversuchs Selbstwirksame Schulen. Berlin: Freie Universität Berlin; 1999.

    Google Scholar 

  • Chaudhuri KR, Martinez-Martin P, Schapira AH, Stocchi F, Sethi K, Odin P, et al. International multicenter pilot study of the first comprehensive self-completed nonmotor symptoms questionnaire for Parkinson’s disease: the NMSQuest study. Mov Disord. 2006;21(7):916–23.

    Article 
    PubMed 

    Google Scholar 

  • Washburn RA, Smith KW, Jette AM, Janney CA. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Goetz CG, Tilley BC, Shaftman SR, Stebbins GT, Fahn S, Martinez-Martin P, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):2129–70.

    Article 
    PubMed 

    Google Scholar 

  • Podsiadlo D, Richardson S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142–8.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zirek E, Ersoz Huseyinsinoglu B, Tufekcioglu Z, Bilgic B, Hanagasi H. Which cognitive dual-task walking causes most interference on the Timed Up and Go test in Parkinson’s disease: a controlled study. Neurol Sci. 2018;39:2151–7.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tiffin J, Asher EJ. The Purdue Pegboard: norms and studies of reliability and validity. J Appl Psychol. 1948;32(3):234.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Agnew J, Bolla-Wilson K, Kawas CH, Bleecker ML. Purdue pegboard age and sex norms for people 40 years old and older. Dev Neuropsychol. 1988;4(1):29–35.

    Article 

    Google Scholar 

  • Trenkwalder C, Kohnen R, Högl B, Metta V, Sixel-Döring F, Frauscher B, et al. Parkinson’s disease sleep scale—validation of the revised version PDSS-2. Mov Disord. 2011;26(4):644–52.

    Article 
    PubMed 

    Google Scholar 

  • Stiasny-Kolster K, Mayer G, Schäfer S, Möller JC, Heinzel-Gutenbrunner M, Oertel WH. The REM sleep behavior disorder screening questionnaire—a new diagnostic instrument. Mov Disord. 2007;22(16):2386–93.

    Article 
    PubMed 

    Google Scholar 

  • Frauscher B, Ehrmann L, Zamarian L, Auer F, Mitterling T, Gabelia D, et al. Validation of the Innsbruck REM sleep behavior disorder inventory. Mov Disord. 2012;27(13):1673–8.

    Article 
    PubMed 

    Google Scholar 

  • Doppler CE, Kinnerup MB, Brune C, Farrher E, Betts M, Fedorova TD, et al. Regional locus coeruleus degeneration is uncoupled from noradrenergic terminal loss in Parkinson’s disease. Brain. 2021;144(9):2732–44.

    Article 
    PubMed 

    Google Scholar 

  • Farrher E, Chiang C-W, Cho K-H, Grinberg F, Buschbeck RP, Chen M-J, et al. Spatiotemporal characterisation of ischaemic lesions in transient stroke animal models using diffusion free water elimination and mapping MRI with echo time dependence. Neuroimage. 2021;244:118605.

    Article 
    PubMed 

    Google Scholar 

  • Volz LJ, Cieslak M, Grafton S. A probabilistic atlas of fiber crossings for variability reduction of anisotropy measures. Brain Struct Funct. 2018;223(2):635–51.

    Article 
    PubMed 

    Google Scholar 

  • Greve KW. The WCST-64: a standardized short-form of the Wisconsin Card Sorting Test. Clin Neuropsychol. 2001;15(2):228–34.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lie C-H, Specht K, Marshall JC, Fink GR. Using fMRI to decompose the neural processes underlying the Wisconsin Card Sorting Test. Neuroimage. 2006;30(3):1038–49.

    Article 
    PubMed 

    Google Scholar 

  • Hensel L, Seger A, Farrher E, Bonkhoff AK, Shah NJ, Fink GR, et al. Fronto-striatal dynamic connectivity is linked to dopaminergic motor response in Parkinson’s disease. Parkinsonism Relat Disord. 2023;114:105777. https://doi.org/10.1016/j.parkreldis.2023.105777.

  • Langkammer C, Pirpamer L, Seiler S, Deistung A, Schweser F, Franthal S, et al. Quantitative susceptibility mapping in Parkinson’s disease. PLoS ONE. 2016;11(9):e0162460.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • R Core Team. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 2022.

  • Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67:1–48.

    Article 

    Google Scholar